
PHYSICAL REVIEW E 66, 066133 ~2002!
Local variational principle

Cristian Predescu*
Department of Chemistry, Brown University, Providence, Rhode Island 02912

~Received 29 July 2002; published 26 December 2002!

A generalization of the Gibbs-Bogoliubov-Feynman inequality for spinless particles is proven and then
illustrated for the simple model of a symmetric double-well quartic potential. The method gives a pointwise
lower bound for the finite-temperature density matrix and it can be systematically improved by the Trotter
composition rule. It is also shown to produce ground state energies better than the ones given by the Rayleigh-
Ritz principle as applied to the ground state eigenfunctions of the reference potentials. Based on this observa-
tion, it is argued that the local variational principle performs better than the equivalent methods based on the
centroid path idea and on the Gibbs-Bogoliubov-Feynman variational principle, especially in the range of low
temperatures.
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I. INTRODUCTION

The Gibbs-Bogoliubov-Feynman~GBF! inequality is a re-
statement of the second law of thermodynamics. Howe
the motivation of the present work is the equally importa
fact that the inequality provides a variational approximat
to the Helmholtz free energy. Historically, Gibbs first stat
the inequality for classical systems, then Bogoliubov a
Feynman generalized it to quantum systems in the oper
and the path-integral formalism of quantum mechanics,
spectively. Perhaps at the expense of losing the orig
physical significance, the local variational principle I d
velop in this work is intended to be a mathematical basis
the design of more efficient computational methods dea
with statistical quantum systems, with special concern
their low-temperature behavior. To fully justify the need fo
local principle, we first have to give a short review of th
Feynman and Gibbs-Bogoliubov inequalities and at t
point, we shall also introduce some notations of use throu
out the paper.

The path-integral formulation of the statistical mechan
began with the Feynman’s realization at an ‘‘intuitive’’ lev
that the density matrix of a monodimensional quantum p
ticle is the expectation value of a suitable function of
Brownian motion@1#. Feynman was actually working on th
real time Schro¨dinger equation, but for the imaginary tim
analog the theory was made rigorous by Kac¸ @2#, the product
being the well-known Feynman-Kac¸ representation formula
~theorem 6.6 of Ref.@3#!

r~x,x8;b!

r f ree~x,x8;b!
5E expH 2bE

0

1

VFx~ t !1A\2b

m
Bt

0GdtJ ,

~1!

where

x~ t !5x1~x82x!t

and
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r f ree~x,x8;b!5A m

2p\2b
expF2

m

2\2b
~x2x8!2G

is the density matrix for a similar free particle.Bt
0 denotes a

standard Brownian bridge~see pp. 40 and 41 of Ref.@3# and
pp. 430 and 431 of Ref.@4#! and the expected value in Eq
~1! is taken with respect to its underlying probability me
sure.

For the sake of simplicity, we shall be concerned main
with the monodimensional case, but the reader should
serve that the theory is in no way restricted to this case. T
is so because the Feynman-Kac¸ formula has a straightfor-
ward multidimensional generalization: one simply utilizes
independent Brownian bridge for each physical degree
freedom. However, we explicitly address various multid
mensional problems, whenever they significantly differ fro
their monodimensional version. As stated, the main theore
obtained in this paper remain true for the multidimensio
systems.

The Fourier path-integral~FPI! implementation of Eq.~1!,
which we exclusively use in this paper, is due to Doll a
Freeman@5# and is based on the exact representation of
Brownian bridge as a random Fourier series with the coe
cients being independent identically distributed~i.i.d.!
Gaussian variables. To rephrase their result in the spirit of
Feynman-Kac¸ representation formula, ifV is the space of
infinite sequencesā[(a1 ,a2 , . . . ) and

P@ ā#5)
k51

`

m~ak! ~2!

is the~unique! probability measure onV such that the coor-
dinate mapsā→ak are i.i.d. variables with distribution prob
ability

m~akPA!5
1

A2p
E

A
e2z2/2 dz ~3!

then,
©2002 The American Physical Society33-1
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Bt
0~ ā![A 2

p2(k51

`

ak

sin~kpt !

k
, 0<t<1 ~4!

is equal in distribution to a standard Brownian bridge. Let
introduce the path-averaged potential functional

U~x,x8,ā;b!5E
0

1

VFx~ t !1 (
k51

`

aksksin~kpt !Gdt, ~5!

where

sk
25

2b\2

p2m

1

k2
,

and make the convention that wheneverx5x8, the primex is
dropped so thatU(x,ā;b)[U(x,x,ā;b). With this notation,
the FPI version of the Feynman-Kac¸ representation formula
~1! is

r~x,x8;b!5r f ree~x,x8;b!E
V

dP@ ā#

3exp@2bU~x,x8,ā;b!#. ~6!

In his treatment of the Fro¨hlich polaron problem@6#,
Feynman constructed an upper bound to the free energy
quantum system by means of the inequality~see formulas
~3.52! and ~3.53! in Ref. @7#!

F<Fb̄
81^U2Ub̄

8&U
b̄
8, ~7!

where, in general,̂O&S
b̄
8 stands for the average

^O&U
b̄
85

E
R
dxE

V
dP@ ā#e2bU

b̄
8(x,ā;b)O~x,ā;b!

E
R
dxE

V
dP@ ā#e2bU

b̄
8(x,ā;b)

. ~8!

The functionalUb̄
8(x,x8,ā;b) was taken to be of the form~5!

for some trial potentialVb̄
8(x) depending upon a set of pa

rametersb̄[(b1 ,b2 , . . . ), butthis is not a requirement an
essentially any function satisfying some mild integrabil
conditions can be utilized in the Feynman inequality~7!.

As argued by Feynman~see Chap. 11 in Ref.@8#!, the
zero-temperature limit of the inequality~7! is

^f b̄
0uĤuf b̄

0
&

^f b̄
0uf b̄

0
&

>e0 , ~9!

whereĤ is the Hamiltonian of the system,e0 is ground state
energy ofĤ, andfb

0 is the ground state eigenfunction of th
trial Hamiltonian

Ĥb̄
852

\2

2m

]2

]x2
1Vb̄

8~x!. ~10!
06613
s

f a

Equation~9! is in agreement with the Rayleigh-Ritz princip
for ground state eigenfunctions and, as an approximat
can be arbitrarily sharpened by use of more accurate
potentials. By the inherent continuity of such problems, th
good variational estimates of the ground state energy im
good estimates of the Helmholtz free energy for the en
low-temperature regime, fact hard to achieve by other me
This helps explain the successful application of the Feynm
variational principle in a variety of theories dealing with th
evaluation of the thermodynamic properties of quantum s
tems@9–14#.

The Gibbs-Bogoliubov inequality@15,16# provides the
following bound to the free energy:

F<Fb̄
81

Tr@~Ĥ2Ĥb̄
8!e2bĤ

b̄
8#

Tr~e2bĤ
b̄
8!

, ~11!

which for spinless particles is proven to be equal to the o
given by the Feynman inequality@7#, whenever the func-
tional Ub̄

8(x,x8,ā;b) can be cast in the form of the Eq.~5!

for a given trial potentialVb̄
8(x). In this situation one talks

about the GBF inequality and of the corresponding var
tional principle consisting of the minimization of the righ
hand expressions in the formulas~7! and ~11! on the set of
parametersb̄. The reader should not conclude that the Gibb
Bogoliubov inequality is automatically weaker than its pa
integral counterpart. For instance, in the case of a fermio
system, the Gibbs-Bogoliubov inequality is still true if th
trace is restricted to the Hilbert space of antisymmetric fu
tions, with the slight requirement that the trial Hamiltonia
Ĥb̄

8 be totally symmetrical under the permutation of identic
particles. However, there is no known path-integral equi
lent to the resulting inequality, the difficulty being related
the so-called fermionic sign problem@17#. It is for this rea-
son that we shall restrict the development of our local va
tional principle to spinless systems.

The GBF usefulness depends upon our ability to anal
cally compute the integrals on the right-hand side of Eq.~7!,
at least the ones with respect to the Fourier coefficients. T
effectively restricts the choice of trial potentials to a hand
~in most cases a quadratic potential! and it is in poor match
with the fact that the Feynman estimate is global, involvi
an integration over the physical coordinates. We thus ar
at the first motivation for our work: a local fitting~pointwise
in the configuration space!, as opposed to a global one
would make more use of a simple reference potential. Th
a pointwise approximation of the density matrix can alwa
be improved by other means than the use of more com
cated trial potentials, the default choice being the Trot
composition rule@18#. Finally, we will show that the local
variational principle developed in this work provides info
mation about the density matrix, information unattainab
from GBF. Our perspective on the computation of the dens
matrix is thus changed: instead of seeking better refere
potentials, we try to find the variational principle whic
makes the best use of a given reference potential.
3-2
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II. THE LOCAL VARIATIONAL PRINCIPLE AS A LOWER
BOUND FOR THE FINITE-TEMPERATURE DENSITY

MATRIX

The purpose of this section is to define the local var
tional principle ~LVP! and further justify its importance. In
addition, we shall consider the particular case of LVP wh
the reference potential is the quadratic one and compare
case with the centroid based approximations@10,19–23#,
particularly with the approximation based on the effect
frequency low temperature~EFLT! propagator@21#, which is
the GBF analog.

The Gibbs-Bogoliubov-Feynman inequality is a cons
quence of Jensen’s inequality and I remind the reader
latter’s statement~see p. 14 in Ref.@4#!:

Theorem 1 (Jensen’s inequality). If (V,P) is a probability
space, if g:V→(a,b) is integrable, and if F is convex on
(a,b) with 2`<a,b<`, then

E F+g dP>FS E gdPD .

By default, whenever we apply Jensen’s inequality in t
work, it is understood that the convex function is the exp
nentialF(x)5exp(2x).

To begin with the definition of the local variational prin
ciple, let us perform a change of measure in Eq.~6! of the
form

r~x,x8;b!5r f ree~x,x8;b!E
V

dP@ ā#e2bU
b̄
8(x,x8,ā;b)

3exp$2b@U~x,x8,ā;b!2Ub̄
8~x,x8,ā;b!#%,

~12!

whereUb̄
8(x,x8,ā;b) is any measurable function dependin

upon a set of parametersb̄5(b1 ,b2 , . . . ) such that

r b̄
8~x,x8;b!5r f ree~x,x8;b!E

V
dP@ ā#e2bU

b̄
8(x,x8,ā;b)

~13!

has an integrable diagonal. Defining a probability meas
by the relation

dP(x,x8,b̄;b)
8 @ ā#5

r f ree~x,x8;b!

r b̄
8~x,x8;b!

e2bU
b̄
8(x,x8,ā;b)dP@ ā#,

~14!

we may rewrite Eq.~12! as

r~x,x8;b!5r b̄
8~x,x8;b!E

V
dP(x,x8,b̄;b)

8 @ ā#

3exp$2b@U~x,x8,ā;b!2Ub̄
8~x,x8,ā;b!#%.

~15!

Now, use of the Jensen’s inequality produces thelocal varia-
tional inequality
06613
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r~x,x8;b!>r b̄
a
~x,x8;b!, ~16!

where

r b̄
a
~x,x8;b!5r b̄

8~x,x8;b!expH 2bE
V

dP(x,x8,b̄;b)
8 @ ā#

3@U~x,x8,ā;b!2Ub̄
8~x,x8,ā;b!#J . ~17!

This inequality is the cornerstone of the variational metho
providing a bound from below to the density matrix. Speci
ized versions of the inequality were considered bef
whether as a starting point for the definition of the part
averaging method@24# or in the context of the Feynman
Kleinert variational-perturbational theory@25,26#. We should
remark here that the nonnegativity of the density matr
which stems from the reality of the path-averaged poten
functional, played an important role. Therefore, the inequ
ity is not true for general complexb. The local variational
inequality~16! implies the Feynman inequality~7!. The latter
can be deduced by settingx5x8 in Eq. ~16!, integrating over
x, working along the same lines as in Eqs.~14! and~15!, and
finally using again Jensen’s inequality to obtain

e2bF>e2bF
b̄
8E

R
dx

r b̄
8~x;b!

e2bF
b̄
8

expH 2bE
V

dP(x,b̄;b)
8 @ ā#

3@U~x,ā;b!2Ub̄
8~x,ā;b!#J

>e2bF
b̄
8 exp@2b^U2Ub̄

8&U
b̄
8#, ~18!

which produces Eq.~7! upon taking the logarithm.
For the rest of the paper, we shall only be concerned w

the case when the functionalUb̄
8(x,x8,ā;b) is the path aver-

age of some reference potential depending upon the se
parametersb̄,

Ub̄
8~x,x8,ā;b!5E

0

1

Vb̄
8Fx~ t !1 (

k51

`

aksksin~kpt !Gdt.

~19!

The reference potentialVb̄
8 is assumed to be aboundingpo-

tential, with a discrete spectrum and a unique and stric
positive ground state eigenfunction. We shall denote
eigenfunctions byf b̄

k(z) and the corresponding eigenvalu

by e b̄
k . Taking the supremum in Eq.~16! over the set of

parametersb̄ produces the sharper LVP,

r~x,x8;b!>rbest~x,x8;b![sup
b̄

r b̄
a
~x,x8;b!. ~20!

We say thatrbest(x,x8;b) is the best approximation of th
density matrix in the sense of LVP. The extremum of t
maximization problem~20! is attained on some paramete
b̄[B̄(x,x8,b) which generally are functions of position an
3-3
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temperature~in case of multiple maxima, choose arbitrari
one of them! and as a direct consequence,rbest(x,x8;b) is
no longer the density matrix of a trial potential.

At this point, it is useful to consider the special case
LVP when the reference potential is the harmonic oscilla
~HO! one. The method will be termed HO-LVP. I onl
present the monodimensional version as a clear suggestio
how the inequality~20! can be employed. The multidimen
sional version as well as the specific numerical implemen
tion and the related problems will make the object of a se
rate paper. The most general monodimensional quad
potential has the form

Vv8 ~x!5
1

2
m0v2~x2z!2, ~21!

where the translational variablez and the frequencyv are the
parameters to be determined by the local variational p
ciple. Straightforward but lengthy calculations by means
the FPI formulation give the following HO-LVP approxima
tion for the density matrix:

rz,v
a ~x,x8;b!

r f ree~x,x8;b!
5h0~bC!expF2

1

2
b3B2h5~bC!

2
1

2
b3A2h6~bC!1

1

2
b2C2h4~bC!G

3expH 2bE
0

1

dtV̄t,vF x~ t !

2A 2\2

p2m
b2Bh2~bC,t !

2A 2\2

p2m
b2Ah3~bC,t !G J . ~22!

In the above,

C5
\v

p
,

B5A 2\2

p2m

mv2

p
~x1x822z!,

A5A 2\2

p2m

mv2

p
~x2x8!. ~23!

Even thoughA, B, andC are in fact functions ofv, z, x, and
x8, we do not write their arguments explicitly in order
save typographical space. Theh functions are tabled in the
Appendix. In addition,

V̄t,v~x!5E
R
V~x1z!

1

A2pGv
2 ~ t !

expF2
z2

2Gv
2 ~ t !

Gdz

~24!
06613
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is a convolution of the original potential with a Gaussian
width

Gv
2 ~ t !5

2b\2

p2m
h1~bC,t ! ~25!

and is called a Gaussian transform of the potential.
The inequality~20! simply states that

r~x,x8;b!>rz,v
a ~x,x8;b!

so that, for each pair of points (x,x8) the maximum of the
right-hand side expression is attained on some optimum
ues of the parametersz5Z(x,x8;b) andv5V(x,x8;b).

I do not discuss here how the HO-LVP technique can
numerically implemented for practical applications. With t
sole difference that there are monodimensional integ
against the parametert to be computed numerically~a trac-
table problem!, the HO-LVP is on par as regards comput
tional difficulty with the centroid based methods@20–23#
and it is amenable to similar approximations~see Ref.@11#
for an example!. They all involve local minimizations and
integrations in the configuration space, respectively, in
centroid space.

Rather, we shall emphasize the differences between s
methods. Since it is required that the density matrix of
reference potential be analytically known, a common feat
of the methods is the fact that only simple references, as
instance the quadratic potential reference, are computat
ally feasible. Therefore, it is desirable that the approximat
which makes the better use of the simple reference pote
be employed in actual simulations. As such, HO-LVP h
two important advantages over EFLT@21#: ~a! it can be ar-
bitrarily improved by Trotter composition@18# and ~b! it
gives an approximation to the true density matrix, whi
provides more information about the system than the va
tional approximation to the centroid density matrix.

Because the first property is clear, we shall be mai
concerned in this paper with proving the second assertion
this point, we notice that the high-temperature limit of a
density matrix is the classical one. However, as the temp
ture is lowered, the discrepancy between the classical and
quantum density matrices increases because the therm
namic spread of the paths entering the Feynman-Kac¸ formula
also increases. In fact, if the number of variables used
parameterize the paths is kept constant, the thermodyna
energy estimator for nonvariational methods such as disc
path integral~DPI! methods@27–30# or FPI methods@5# ex-
trapolates to the classical energy in the low-temperature l
too @31#, a phenomenon dubbed ‘‘classical collapse.’’ G
chetti and Tognetti@9# as well as Feynman and Kleinert@10#
noticed that this is not true of the variational methods ba
upon the GBF principle. Following their line of thought, on
may argue that the low-temperature limit of the energy e
mator for the EFLT centroid method~see Eqs.~2.34!, ~2.35!,
~2.41!, and~2.42! of Ref. @21#! is

infz,v

^fz,v
0 uĤufz,v

0 &

^fz,v
0 ufz,v

0 &
>e0 ,
3-4
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i.e, the expected energy of the best Gaussian wave pa
@Remember thatfz,v

0 (x) is the ground state eigenfunction o
the reference potential given by Eq.~21!#. This is a quite
remarkable fact because the harmonic oscillator is know
be a good approximation of the potential surface around
main local minima.

However, one very important aspect of the centroid d
sity matrix rc( x̄;b) is that it bears no direct connection
the true density matrix. For instance, givenrc( x̄;b), one
cannot compute exactly the ensemble average potentia
ergy

E
R
r~x;b!V~x!dx

E
R
r~x;b!dx

,

though useful approximations are known@22#. As far as the
total energy is concerned, this can be exactly evaluated
the help of theT-method estimator~see Sec. V for defini-
tion!. But up to some functionals of it, as for example, t
partition function, this is theonly propertythat can be com-
puted exactly once the centroid density matrix is know
Clearly, there is noH-method estimator for the centroid de
sity matrix. Things are totally different in the case of th
local variational principle because this provides an appro
mation for the true density matrix and so the expectat
values of different operators are readily available. Ev
more, we shall later show that the zero-temperature limi
the H-method estimator is a ground state energy estim
alwaysbetter than the corresponding centroid one, the la
being matched by the low-temperature limit of the LVPT
estimator. I hope this would be enough evidence to convi
the reader that LVP provides the better description of
physical system.

From the above discussion, we infer that the quality o
variational approximation is dictated by its low-temperatu
limit, and in the following section we shall establish wh
this limit is in the case of the local variational principle. Th
reader should not forget that LVP provides a variatio
bound from below to thefinite-temperaturedensity matrix
and that it is intended as an approximation method for
density matrix. Therefore, LVP is in no way limited to th
computation of the ground state eigenfunction, which
however our object of interest for the following section.

III. THE EIGENFUNCTION REPRESENTATION
OF THE LVP

In order to establish the low-temperature limit of the loc
variational principle, as well as to show that the local var
tional inequality~20! can also be interpreted as a generali
tion of the Gibbs-Bogoliubov inequality, we need to expre
r b̄

a(x,x8;b) in terms of the eigenfunctions and the eigenv

ues of the potentialVb̄
8(x). We again develop the theory i

full generality, rather than discussing the special HO-L
case.

In anticipation of the final result, let us see that the eig
06613
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functions and the eigenvalues of the perturbed Hamilton

Ĥb̄,l
8 5Ĥb̄

81l@V~x!2Vb̄
8~x!# ~26!

as given by the first-order Rayleigh-Schro¨dinger perturbation
theory are of the form

f b̄,l
k

~x!'f b̄
k
~x!2l(

iÞk

`

ckif b̄
i
~x!, ~27!

respectively,

e b̄,l
k

'e b̄
k
1l^f b̄

kuV2Vb̄
8uf b̄

k
&, ~28!

provided that the eigenfunctionsf b̄
i (x) are chosen such

that the perturbationV(x)2Vb̄
8(x) is diagonalized on each

degenerate subspace. LettingDk5$ i PN:e b̄
i
5e b̄

k
% and nki

5^f b̄
kuV2Vb̄

8uf b̄
i
&, the exact expressions for the coefficien

cki are ~see Chap. 5 in Ref.@32#!

cki5
nki

e b̄
i
2e b̄

k , e b̄
i
Þe b̄

k ,

cki5
1

n i i 2nkk
(

j ¹Dk

nk jn j i

e b̄
j
2e b̄

k , e b̄
i
5e b̄

k , n i i Þnkk ,

cki50, e b̄
i
5e b̄

k , n i i 5nkk . ~29!

I warn the reader that Eqs.~27! and ~28! areexactto the
first order inl, for instance,

lim
l→0

e b̄,l
k

2e b̄
k

l
5^f b̄

kuV2Vb̄
8uf b̄

k
&.

With these preparations, we are ready to prove an imp
tant lemma.

Lemma 1.

bE
V

dP(x,x8,b̄,b)
8 @ ā#@U~x,x8,ā;b!2Ub̄

8~x,x8,ā;b!#

5

(
k50

`

(
j Þk

`

ck j@f b̄
k
~x!f b̄

j
~x8!1f b̄

k
~x8!f b̄

j
~x!#e2be

b̄

k

(
k50

`

f b̄
k
~x!f b̄

k
~x8!e2be

b̄

k

1b

(
k50

`

f b̄
k
~x!f b̄

k
~x8!^f b̄

kuV2Vb̄
8uf b̄

k
&e2be

b̄

k

(
k50

`

f b̄
k
~x!f b̄

k
~x8!e2be

b̄

k
. ~30!

Proof. Write Vb̄
9(x)5V(x)2Vb̄

8(x) and

Ub̄
9~x,x8,ā;b!5U~x,x8,ā;b!2Ub̄

8~x,x8,ā;b!,
3-5
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so that

Ub̄
9~x,x8,ā;b!5E

0

1

Vb̄
9Fx~ t !1 (

k51

`

aksksin~kpt !Gdt.

Then consider the equality

bUb̄
9~x,x8,ā;b!5 lim

l→0

12exp@2lbUb̄
9~x,x8,ā;b!#

l
.

Remembering the definition~14! of the probability measureP(x,x8,b̄;b)
8 @ ā# and the eigenfunction series representation o

density matrix, we learn that

bE
V

dP(x,x8,b̄;b)
8 @ ā#Ub̄

9~x,x8,ā;b!5 lim
l→0

1

l

(
k50

`

f b̄
k
~x!f b̄

k
~x8!e2be

b̄

k

2 (
k50

`

f b̄,l
k

~x!f b̄,l
k

~x8!e2be
b̄,l

k

(
k50

`

f b̄
k
~x!f b̄

k
~x8!e2be

b̄

k
, ~31!
s

be
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ta

le

al
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xi-

-

l.
ical
r of
wheref b̄,l
k (z) ande b̄,l

k are, respectively, the eigenfunction
and the eigenvalues of the perturbed Hamiltonian~26!.

For smalll, we may use the Rayleigh-Schro¨dinger per-
turbation theory to compute the spectrum of the pertur
Hamiltonian Ĥb̄,l

8 . The reader should realize that the on
corrections needed are the ones to the first order inl ~which
are exactlygiven by the Rayleigh-Schro¨dinger perturbation
theory!, since the others will cancel upon lettingl go to
zero. To conclude the proof, use the formulas~27! and ~28!
and explicitly compute the limit in Eq.~31!. j

Lemma 1 together with the well-known series represen
tion of a density matrix

r b̄
8~x,x8;b!5 (

k50

`

f b̄
k
~x!f b̄

k
~x8!e2be

b̄

k

~32!

essentially solves the eigenfunction representation prob
The functions

Tb̄
(1)

~x,x8;b!5(
j Þk

ck j@f b̄
k
~x!f b̄

j
~x8!1f b̄

k
~x8!f b̄

j
~x!#e2be

b̄

k

~33!

and

Tb̄
(2)

~x,x8;b!5 (
k50

`

f b̄
k
~x!f b̄

k
~x8!^f b̄

kuV2Vb̄
8uf b̄

k
&e2be

b̄

k

,

~34!

respectively, have the following obvious properties:

E
R
Tb̄

(1)
~x;b!dx50 ~35!

and
06613
d

-

m.

E
R
Tb̄

(2)
~x;b!dx5 (

k50

`

^f b̄
kuV2Vb̄

8uf b̄
k
&e2be

b̄

k

5Tr@~Ĥ2Ĥb̄
8!e2bĤ

b̄
8#. ~36!

Therefore,
Theorem 2. The eigenfunction expansion form of the loc

variational inequality~20! is

r~x,x8;b!>r b̄
a
~x,x8;b!5r b̄

8~x,x8;b!

3expF2
Tb̄

(1)
~x,x8;b!1bTb̄

(2)
~x,x8;b!

r b̄
8~x,x8;b!

G .

~37!

Before continuing, the reader is advised to ponder o
the value of this theorem by analyzing the HO-LVP appro
mationrz,v

a (x,x8;b) compactly given as amonodimensional
integral againstt by Eq.~22!. The same HO-LVP approxima
tion can be exactly written in terms of the eigenvalues

ez,v
k 5\vS k1

1

2D
and the eigenfunctions

fz,v
k ~x!5~2kk! !21/2S m0v

p\ D 1/4

ez2/2Hk~z!

of the harmonic oscillator reference potential~21!, in the
form given by Theorem 2. Here,z5(m0v/\)1/2(x2z),
while Hk(x) stands for the respective Hermite polynomia
Of course, the eigenfunction representation is of no pract
use, but it allows us to study the low-temperature behavio
the density matrix.
3-6
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In the form~37!, the local variational inequality is readil
seen to imply the Gibbs-Bogoliubov inequality. Indeed, s
ting x5x8, integrating overx and applying Jensen’s inequa
ity produces

e2bF>e2bF
b̄
8E

R
dx

r b̄
8~x;b!

e2bF
b̄
8

3expF2
Tb̄

(1)
~x;b!1bTb̄

(2)
~x;b!

r b̄
8~x;b!

G
>e2bF

b̄
8 expH 2b

Tr@~Ĥ2Ĥb̄
8!e2bĤ

b̄
8#

Tr~e2bĤ
b̄
8!

J , ~38!

where we used the relations~35! and~36!. The last equation
produces the Gibbs-Bogoliubov inequality upon taking
logarithm. Moreover, since we performed the same ope
tions as for Eq.~18!, we also get a proof of the equivalenc
between Feynman and Gibbs-Bogoliubov inequalities, p
vided that the form~19! for the trial potential is assumed.
is in this respect that we regard LVP as a generalization
both aforementioned inequalities, even if the best den
matrix predicted is not necessarily derivable from a potent

The remainder of this section deals with the lo
temperature behavior of the LVP density matr
rbest(x,x8;b). An immediate corollary of Lemma 1 is th
equality

lim
b→`

bH E
V

dP(x,x8,b̄;b)
8 @ ā#@U~x,x8,ā;b!2Ub̄

8~x,x8,ā;b!#

2^f b̄
0uV2Vb̄

8uf b̄
0
&J 5Sb̄~x!1Sb̄~x8!, ~39!

where

Sb̄~x!5 (
k51

` f b̄
k
~x!

f b̄
0
~x!

^f b̄
0uV2Vb̄

8uf b̄
k
&

e b̄
k
2e b̄

0 ~40!

is a function which does not depend upon temperature
deducing Eq.~40!, one uses the fact that the ground sta
eigenfunction of the trial potentialVb̄

8(x) is not degenerate
Then, the asymptotic formula

r b̄
8~x,x8;b!'f b̄

0
~x!f b̄

0
~x8!exp~2be b̄

0
!

implies

r b̄
a
~x,x8;b!'f b̄

0
~x!f b̄

0
~x8!exp$2@Sb̄~x!1Sb̄~x8!#%

3exp@2b~e b̄
0
1^f b̄

0uV2Vb̄
8uf b̄

0
&!#. ~41!

I warn the reader that here and in the remainder of the pa
the sign' is used to denote alow-temperature asymptoti
form, its rigorous interpretation being
06613
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lim
b→`

$exp@b~e b̄
0
1^f b̄

0uV2Vb̄
8uf b̄

0
&!#r b̄

a
~x,x8;b!%

5f b̄
0
~x!f b̄

0
~x8!exp$2@Sb̄~x!1Sb̄~x8!#%.

Looking at Eq.~41!, we see that the factor containing th
Sb̄(x) functions simply disappears in the original GBF equ
tion because of the identity~35!. Thus, our theory brings
some additional information about the shape of the grou
state density matrix, and we shall later prove that the corr
tion factor is always an improvement in the energetic sen
After an obvious simplification of the terms explicitly in
volving the potentialVb̄

8(x), the following theorem is imme-
diate.

Theorem 3. The asymptotic formula ofrbest(x,x8;b) at
low temperature is

rbest~x,x8;b!'f b̄
0
~x!f b̄

0
~x8!exp$2@Sb̄~x!1Sb̄~x8!#%

3exp@2bE~f b̄
0
!#u b̄5B̄(x,x8,`) , ~42!

where

E~c!5E
R
F \2

2m
i¹c~x!i21c~x!2V~x!Gdx ~43!

and the functions B̄(x,x8,`) are computed by the following
recipe.

~1! Minimize the functional E(f b̄
0). If it is unique, the

value of b̄ on which the minimum is attained becom

B̄(x,x8,`); x,x8PR.
~2! If there are multiple minima of E(f b̄

0), pick an arbi-
trary one among those that further maximizes

f b̄
0
~x!f b̄

0
~x8!exp$2@Sb̄~x!1Sb̄~x8!#%

at each pair of points(x,x8).
Let us analyze a little more closely what the last theor

says. Assume that we are in the simple case when the m
mum of the functionalE(f b̄

0) is unique. Up to a normaliza
tion factor, Theorem 3 predicts the following approximatio
to the ground state eigenfunction:

c b̄~x!5f b̄
0
~x!expH 2 (

k51

` f b̄
k
~x!

f b̄
0
~x!

^f b̄
0uV2Vb̄

8uf b̄
k
&

e b̄
k
2e b̄

0 J ,

~44!

where the optimal parametersb̄ do not depend upon the co
ordinates (x,x8). Thus, Theorem 3 does not simply predi
the function f b̄

0(x), though the thermodynamic weight i
computed with respect to this function. An immediate qu
tion is in place: What can we say about the quality of t
above eigenfunction? The quite remarkable answer is pro
in the following section@see Eq.~79!#, and says that the
expected energy ofc b̄(x) is always smaller or equal to th
expected energy off b̄

0(x). In other words, LVP predicts an
energetically better ground state eigenfunction, and we s
prove in Sec. V that we can recover its expected energy
3-7
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use of theH estimator. Finally, for multidimensional sys
tems, LVP predicts acorrelatedapproximation of the ground
state eigenfunction even if the reference is a sum of mo
particle potentials. The low-temperature density matrix giv
by Eq. ~42! has no GBF equivalent and justifies our cla
that LVP is a separate and more powerful principle.

IV. THE EXPECTED ENERGY OF THE LVP GROUND
STATE DENSITY MATRIX

Let us remember that our special interest for the grou
state density matrix is due to our experience that the var
approximations used to compute the finite-temperature st
tical properties of a physical system worsen in the lo
temperature regime. By the intrinsic continuity of the var
tional methods~see Sec. V for further clarifications!, a good
approximation of the ground state density matrix necessa
implies a good approximation for the finite-temperature d
sity matrix. In this section, we shall analyze the expec
energy of the ground state density matrix predicted by Th
rem 3, but we assume a special form of the density ma
which is encountered in practical applications whenever
potentialV(x) has a finite number of local minima.

There is one special parameterb0 which accounts for a
translation and which we add to the list of parametersb̄
5(b1 ,b2 , . . . ). From now on, we shall conform to the con
vention that if not written explicitly in an expression,b0 is
assumed to be part of the list of parametersb̄ i.e., b̄
5(b0 ,b1 . . . ). Otherwise, ifb0 does appear in an expre
sion, the listb̄ is assumed not to contain it. The importan
of this parameter consists of the fact that, if it is included,
optimizing coefficientsB̄(x,x8;`) usually become constan
on certain regions of the configuration space, which are id
tified with the main wells of the potential. Of course, for a
n-dimensional system, there aren translational parameters
one for each dimension.

To begin with, we replace Eq.~19! by the slightly more
general form

Ub0 ,b̄
8 ~x,x8,ā;b!5E

0

1

Vb̄
8F2b01x~ t !

1 (
k51

`

aksksin~kpt !Gdt. ~45!

According to our convention,Vb̄
8(x) does not depend explic

itly upon b0, the value of this parameter, which sets t
origin of the potential, being automatically determined
LVP. All our results remain true if computed with respect
the local reference potentialVb0 ,b̄

8 (x)5Vb̄
8(x2b0). If the

eigenfunctions ofVb0 ,b̄
8 (x) arefb0 ,b̄

k (x) and the correspond

ing eigenvalues areeb0 ,b̄
k , then we havefb0 ,b̄

k (x)5f b̄
k(x

2b0) and eb0 ,b̄
k

5e b̄
k . It is then convenient to introduce th

two local quantities

Vz~x!5V~x1z! ~46!
06613
o-
n

d
s

is-
-
-

ly
-
d
-

ix
e

e

n-

and

Ez~c!5E
R
F \2

2m
i¹c~x!i21c~x!2V~x1z!Gdx. ~47!

Also, we shall usez instead ofb0 and letA index all the
pairs (za ,B̄a) on which the minimum of the problem

Ebest5 inf
z,b̄

Ez~f b̄
0
! ~48!

is achieved. The new system of indexation makes the old
superfluous, so we shall drop some indices. We define

Sa~x!5 (
k51

` fa
k ~x2za!

fa
0~x2za!

^fa
0 uVza

2VB̄a
8 ufa

k &

ea
k 2ea

0
~49!

and

ca~x!5fa
0~x2za!exp@2Sa~x!#, ~50!

wherefa
k (x) andea

k are, respectively, the eigenfunctions a
the eigenvalues of the trial potentialVB̄a

8 (x).

With these notations, Theorem 3 takes on the spe
form.

Theorem 4. If Eq. ~45! is assumed, then the asymptot
formula ofrbest(x,x8;b) at low temperature is

rbest~x,x8;b!'exp~2bEbest!rbest
+ ~x,x8!, ~51!

where Ebest is the defined byEq. ~48! and

rbest
+ ~x,x8!5 sup

aPA
ca~x!ca~x8!. ~52!

To appreciate the importance of the translational para
eter z, let us perform the minimization in Eq.~48! in two
separate steps. First, we construct an effective potential

Ve f~z!5 inf
b̄

Ez~f b̄
0
! ~53!

and second, we compute

Ebest5 inf
z

Ve f~z!. ~54!

For monodimensional systems, it is usually the case that
minimum of the first problem is attained on unique poin
b̄[B̄(z) while for multidimensional ones~especially for sys-
tems in condensed phase! there is usually a finite number o
minimizing parameters. The effective potential is in fact
mollification of the original potentialV(z), to which it con-
verges as the ratio\2/m goes to zero. For systems in con
densed phase, it is often the case that both the original
the effective potentials have finitely many global minim
and in this section we shall assume that there are fini
many pairs (zi ,B̄i),i P1,N on which infz,b̄Ez(f b̄

0) is attained.
A more general result will be proved in Sec. V. If we set
3-8
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Di5$~x,x8!PR2:rbest
+ ~x,x8!5c i~x!c i~x8!%, ~55!

then the setsDi are assumed to be disjoint except for th
~topological! frontiers which are required to have measu
zero. It follows that the optimizing coefficients are consta
on the interior of the setsDi and thatrbest

+ (x,x8) is twice
derivable with continuous derivatives on the same interio
yet continuous on the entire planeR2. Therefore, the diago
nal density matrixrbest

+ (x) as well as its square root hav
similar continuity properties with respect to thediagonalsets
Di

p , defined as the intersections of theDi ’s with the line of
equation x5x8 @remember the conventionrbest

+ (x)
[rbest

+ (x,x)].
The rest of this section deals with the evaluation of

expected energy ofrbest
+ (x,x8). To reinforce the proofs, we

study a simple example of a quartic double-well potentia
the context of the HO-LVP approximation, along with th
general approach. We shall set\51, and consider a particle
of massm51 moving in the potential

V~x!5
1

2
~x2A!2~x1A!2, ~56!

whereA51.5 ~see Fig. 1!. The reference potential is a qua
dratic one, of variable frequencyv.0,

Vv8 ~x!5
1

2
mv2x2. ~57!

The functional~47! can be worked out explicitly to be

Ez~v!5
v

4
1

3z22A2

2v
1

3

8v2
1V~z!. ~58!

Figure 1 also contains a plot of the effective potential

Ve f~z!5 inf
v.0

Ez~v!

and shows thatVe f(z) attains its global minimumEbest
51.404 on the two symmetric pointsz1521.292 andz2
51.292. The corresponding optimum reference potential
quencies arev15v25v52.584, equal by the symmetry o

FIG. 1. A plot of the symmetric double-well quartic potenti
~56! and of its associated effective potential~53!.
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the problem. TheSi(x) functions can be expressed in term
of the Hermite polynomials as

Si~x!5 (
k53,4

ck
i 1

A2kk!

Hk@v1/2~x2zi !#

kv
, ~59!

wherec3
1520.539, c3

250.539, andc4
15c4

250.092. In gen-
eral, it can be shown that all the coefficientsck with k.2n
vanish for any polynomial potential of rank at most 2n,
while the coefficientsc1 andc2 vanish for all potentials. The
functionsc i(x) have the form

c i~x!5expF2
1

2
v~x2zi !

22Si~x!G , ~60!

so that

rbest
+ ~x,x8!5 max

i P$1,2%

c i~x!c i~x8!. ~61!

In Fig. 2, one may see that the low-temperature density
trix predicted by LVP is symmetrical at reflection with re
spect to both the main and the secondary axes. Though
tinuous on the entire plane, the density matrix has a c
along the secondary axis. The setsDi are readily identified:
D15$(x,x8):x8,x% and D25$(x,x8):x8.x% with the di-
agonalsD1

p5$x,0% andD2
p5$x.0%.

Let us go back to the energy evaluation problem. The la
of continuity of the first derivatives on the boundaries]Di
requires a careful analysis of the kinetic energy. We cons
two estimators,

K1~r!5
\2

2m

E
R

]2

]x]x8
r~x,x8!U

x5x8

dx

E
R
r~x!dx

~62!

and

FIG. 2. A plot of the low-temperature density matrix predict
by LVP. There are only two maxima instead of four symmetric
ones, the true density matrix would present.
3-9
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K2~r!52
\2

2m

E
R

]2

]x2
r~x,x8!U

x5x8

dx

E
R
r~x!dx

, ~63!

where the derivatives are regarded as functions almost ev
where defined and not as distributions. We shall denote
E1(r) andE2(r) the associated energy estimators, obtain
by adding the expected potential energy.

A little thought shows that the following equality hold
for all the points (x,x8) in the first and the third quadrants o
the plane:

rbest
+ ~x,x8!5Arbest

+ ~x!Arbest
+ ~x8!. ~64!

In fact, the square root of the diagonal densityrbest
+ (x),

which has a cusp in the origin as shown in Fig. 3, will pl
such an important role in our development that it deserve
notation,

c +~x!5Arbest
+ ~x!. ~65!

In general, one may show that around each diagonal p
(x,x) on the interior of some setDi

p , there is a small neigh
borhood inR2, say the ballB@e,(x,x)#, such that Eq.~64!
holds onB@e,(x,x)#. Relation ~64! need not hold for the
diagonal points (x,x) that are precisely on some frontie
]Di

p but from the point of view of integration theory, thi
does not matter because the frontier has measure zero.
sequently, the following equalities are true:

K1~rbest
+ !5

\2

2m

E
R

i“c +~x!i2dx

E
R
c +~x!2dx

~66!

and

K2~rbest
+ !52

\2

2m

E
R
c +~x!

]2

]x2
c +~x! dx

E
R
c +~x!2dx

. ~67!

FIG. 3. For the double-well quartic potential~56!, the approxi-
mate ground state wave functionc +(x) defined by Eq.~65! has a
cusp at the origin.
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Becauserbest
+ (x) is continuous on the entireR by the way

it was constructed, it can be proven thatc +(x) is in the
Sobolev spaceH1,2(R), thus a permissible trial function fo
the ground state eigenfunction of the potentialV(x). For
functionsc(x) in H1,2(R), the Rayleigh-Ritz principle state
that

e0<
\2

2m

E
R

i“c~x!i2dx

E
R
c~x!2dx

1

E
R
V~x!c~x!2dx

E
R
c~x!2dx

. ~68!

Consequently, the correct variational definition of the
netic energy is given by the formula~62! and we have our
first important result,

e0<E1~rbest
+ !. ~69!

For the case of the quartic potential, the exact values
e051.292 andE1(rbest

+ )51.342. We see that our estimatio
of the ground state energy is better than the one given
GBF, which isEbest51.404. We shall prove that this is n
mistake, and that the energy of the asymptotical lo
temperature density matrix predicted by LVP is always low
than the one predicted by GBF. We do this in two steps: fi
we prove thatE1(rbest

+ )<E2(rbest
+ ) and then thatE2(rbest

+ )
<Ebest.

Integration by parts produces

2E
R
c +~x!

]2

]x2
c +~x!dx5

1

2 (
i 51

N21 ]@c i 11
2 2c i

2#

]x
~xi !

1E
R

i“c +~x!i2dx, ~70!

where the pointsxi are separating two consecutive setsDi
p

and Di 11
p on which the diagonal density matrix takes th

values c i(x)2 and c i 11(x)2, respectively. Notice tha
c i(xi)

25c i 11(xi)
2 and that

c i 11~xi1h!2>c i~xi1h!2

for all positive and small enoughh or, otherwise,rbest
+ (x)

5c i(x)2 for somexPDi 11
p contradicting the definition of

the set. Therefore,

]@c i 11
2 2c i

2#

]x
~xi !5 lim

h↘0

c i 11
2 ~xi1h!2c i

2~xi1h!

h
>0,

~71!

which together with Eq.~70! proves that

E1~rbest
+ !<E2~rbest

+ !. ~72!

For multidimensional systems, the same reasoning can
performed along the normalsn̄ i j to the surfaces]Di

pù]D j
p

3-10
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separating the setsDi
p andD j

p . The normaln̄ i j is assumed
oriented from theDi

p toward theD j
p set. Then, the analog o

Eq. ~71! is

“@c j
22c i

2#• n̄ i j >0 on ]Di
pù]D j

p ~73!

and the analog of Eq.~70! is

2E
Rn

c +~x!Dc +~x!dx5E
Rn

i“c +~x!i2dx

1
1

2 (
i , j

E
]Di

p
ù]D j

p
“@c j~x!22c i~x!2#• n̄ i j ds,

~74!

proving again the inequality~72!.
Finally, let us show thatE2(rbest

+ )<Ebest. Becausef i
0 is

strictly positive, we can write any other eigenfunctionf i
k(x)

as the productf i
k(x)f i

0(x). By direct substitution, one ca
show that the functionf i

k(x) satisfies the following equation

2
\2

2m
D f i

k~x!2
\2

2m
“ ln@f i

0~x!2#•“ f i
k~x!5~e i

k2e i
0! f i

k~x!.

~75!

It follows then that

2
\2

2m
DSi~x!2

\2

2m
“ ln@f i

0~x2zi !
2#•“Si~x!

5 (
k51

`

f i
k~x2zi !^f i

0uVzi
2VB̄i

8 uf i
k&. ~76!

The sum of the last series equals

V~x!2VB̄i
8 ~x2zi !2^f i

0uVzi
2VB̄i

8 uf i
0&

by the completeness of the system of eigenfuncti
$f i

k(x);k>0% and the translational invariance of the int
grals involved, so we end up with the equality

2
\2

2m
DSi~x!2

\2

2m
“ ln@f i

0~x2zi !
2#•“Si~x!

5@V~x!2VB̄i
8 ~x2zi !#2^f i

0uVzi
2VB̄i

8 uf i
0&. ~77!

With the help of Eq.~77!, one can show by explicit compu
tation that

2
\2

2m
Dc i~x!1V~x!c i~x!

5Fe i
01^f i

0uVzi
2VB̄i

8 uf i
0&2

\2

2m
i“Si~x!i2Gc i~x!

5FEbest2
\2

2m
i“Si~x!i2Gc i~x!. ~78!
06613
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We then multiply Eq.~77! by c i(x), integrate over the set
Di

p , sum the contributions of all sets and conclude that

E2~rbest
+ !5Ebest2

\2

2m

(
i 51

N E
Di

p
rbest

+ ~x!i“Si~x!i2dx

E
R
rbest

+ ~x!dx

.

~79!

Indeed, for the case of the quartic potential, one compu
E2(rbest

+ )51.372 which is seen to be lower thanEbest

51.404 but higher thanE1(rbest
+ )51.342. The relations

~69!, ~72!, and~79! combined give

e0<E1~rbest
+ !<E2~rbest

+ !<Ebest, ~80!

which proves our previous assertion that the asymptotic d
sity matrix predicted by LVP has a lower energy than the o
given by GBF. In fact, ifEbest,`, the last inequality is strict
except for the case when the original potential and the o
mized trial potential are identical.

V. AVERAGE ENERGY AT LOW TEMPERATURE:
THE SEMISUM THEOREM

The LVP approximation is intended as a technique
computing finite-temperature properties of a quantum ph
cal system, properties that are usually of the form

^O&b5

E
R
dxrbest~x;b!O~x;b!

E
R
dxrbest~x;b!

.

Such averages can be estimated for fairly complex syst
by Monte Carlo simulations@33#. The problem we address i
this section is the low-temperature limit of different ener
estimators. For operators which are diagonal in the coo
nate representation, for example, the potential energyV(x),
the estimating functionO(x) does not depend upon temper
ture and the zero-temperature limit is

lim
b→`

^O&b5

E
R
dxrbest

+ ~x!O~x!

E
R
dxrbest

+ ~x!

.

In this paper, we assume that the pointwise optimizat
in the configuration space involved by LVP can be rapid
implemented by standard local optimization procedures,
erative methods or other approximations. Since this is a
assumption by itself, estimators explicitly depending up
the derivatives of the optimizing parametersB̄(x,x8;b) are
clearly out of question. In the remainder of this section,
shall consider the important problem of computing the e
semble average energy with the help of the so-calledT- and
H-method estimating functions, both of which can be put
3-11
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a form that satisfies the aforementioned restriction. With
gard to the zero-temperature limit, we are interested to le
whether we can recover fully or only partiallyE1(rbest

+ ), the
best energy predicted by LVP. We shall prove that we reco
Ebest with the help of theT-method estimator, the semisu
of E1(rbest

+ ) andE2(rbest
+ ) by theH-method estimator. The

last fact is called thesemisum theorem.
We begin by considering some preliminary results. T

maximum condition~20! implies the equality

]

]b̄
r b̄

a
~x,x8;b!U

b̄5B̄(x,x8;b)

50 ; x,x8PR. ~81!

Another consequence of the same extremum condition is
the Hessian matrix

]2

]b̄2
r b̄

a
~x,x8;b!U

b̄5B̄(x,x8;b)

~82!

is negative definite;x,x8PR. Moreover, the symmetry o
r b̄

a(x,x8;b) in the argumentsx andx8 implies the symmetry

of the minimizing functionsB̄(x,x8;b) in the same argu-
ments. We then have the equality

]

]x
B̄~x,x8;b!U

x5x8

5
]

]x8
B̄~x,x8;b!U

x5x8

. ~83!

At finite temperature, because of the thermal averaging,
safe to assume that the optimizing parametersB̄(x,x8;b) are
nice functions in their arguments with continuous partial d
rivatives at least to the first order. This might not be true
B̄(x,x8;`) which may be constant on the interior of som
setsDi , but vary suddenly at their frontier.

For the rest of the paper, we shall assume thatrbest
+ (x,x8)

is in the Sobolev spaceH1,2(R2). Thus, the norms~defined
here by their square!

irbest
+ i0

25E
R
dxE

R
dx8rbest

+ ~x,x8!2 ~84!

and

irbest
+ i1

25irbest
+ i0

21E E
R2

@~]xrbest
+ !21~]x8rbest

+ !2#

~85!

are finite~for the case analyzed in the preceding section, i
rather trivial to prove that these conditions are fulfilled!. We
shall also assume the existence of the second derivative
most everywhere. Some mathematical difficulties force u
restrict the analysis to potentials bounded from below—th
positive by a change of reference.

To avoid the excessive use of big vertical lines, we sh
follow the rule that all functionsf (x,x8,b̄;b) explicitly de-
pending uponb̄ are evaluated atb̄5B̄(x,x8;b) if the results
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are to hold. The evaluation is done after any differentiat
but before integration.

There are a couple of energy estimators in literature@33#,
of which we shall consider the most important two: the
called T-method andH-method estimators. The first one
computed by temperature differentiation of the canoni
partition function,

^E&b
T52

]

]b
lnF E

R
rbest~x;b!dxG . ~86!

With the help of Eq.~81!, one can show that

^E&b
T52

E
R

]

]b
r b̄

a
~x;b!dx

E
R
r b̄

a
~x;b!dx

, ~87!

expression that is seemingly easier to compute since it d
not involve the evaluation of the partial derivatives
B̄(x,x8;b) with respect to temperature. The low-temperatu
limit is computed by replacing in formula~86! the
asymptotic density matrix given by expression~51!, to pro-
duce

lim
b→`

^E&b
T5Ebest, ~88!

i.e., the ground state energy we get by using theT-method
estimator coincides with the best energy provided by the a
log centroid based approximations.

In the particular case of the HO-LVP approximation, t
diagonal density matrix takes the form

rz,v
a ~x;b!5A m

2p\2b
h0~bC!

3expF2
1

2
b3B2h5~bC!1

1

2
b2C2h4~bC!G

3expH 2bE
0

1

dtV̄t,v@x2sb3/2Bh2~bC,t !#J ,

~89!

where

s25
2b\2

p2m
. ~90!

The T-estimator function has the expression
3-12
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Ez,v
T ~x;b!5

1

2b
1E

0

1

dtV̄t,v@x2sb3/2Bh2~bC,t !#

2
1

2
sb3/2BE

0

1

dtV̄t,v8 @x

2sb3/2Bh2~bC,t !#h2~bC,t !1
1

2
s2E

0

1

dtV̄t,v9

3@x2sb3/2Bh2~bC,t !#h1~bC,t !. ~91!

The H-method estimator is the direct expected value
the Hamiltonian,

^E&b
H5

E
R
dxĤrbest~x,x8;b!U

x5x8

E
R
dxrbest~x;b!

. ~92!

In computing the kinetic term of Eq.~92!, the following
formula proves beneficial:

^K&b
H5

\2

4m

E
R
dxS ]2

]x]x8
2

]2

]x2D rbest~x,x8;b!U
x5x8

E
R
dxrbest~x;b!

.

~93!

We compute the expected kinetic energy as the semisum
the two identical terms, because this way no derivatives
B̄(x,x8;b) appear in the final formula. By differentiation o
Eq. ~81! againstx8, we get the system of equations

]2

]b̄]x8
r b̄

a
~x,x8;b!1

]2

]b̄2
r b̄

a
~x,x8;b!

]B̄~x,x8;b!

]x8
50

~94!

and there is a similar one for the derivatives againstx. From
Eqs. ~81! and ~94!, the following equalities can be deduce
by explicit calculation:

]2

]x]x8
rbest~x,x8;b!

5
]2

]x]x8
r b̄

a
~x,x8;b!2

]2

]b̄2
r b̄

a
~x,x8;b!

3
]B̄~x,x8;b!

]x

]B̄~x,x8;b!

]x8
~95!

and
06613
f
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f

]2

]x2
rbest~x,x8;b!

5
]2

]x2
r b̄

a
~x,x8;b!2

]2

]b̄2
r b̄

a
~x,x8;b!

3
]B̄~x,x8;b!

]x

]B̄~x,x8;b!

]x
. ~96!

By adding Eqs.~95! and~96! and using Eq.~83!, we get the
equality

H ]2

]x2
rbest~x,x8;b!2

]2

]x]x8
rbest~x,x8;b!J U

x5x8

5H ]2

]x2
r b̄

a
~x,x8;b!2

]2

]x]x8
r b̄

a
~x,x8;b!J U

x5x8

.

~97!

Relation~97! shows that there is no need for the partial d

rivatives of the optimizing parametersB̄(x,x8;b) againstx
or x8 in order to evaluate the ensemble average energy by
H-method estimator. We shall introduce two additional
netic energy estimators which serve as intermediate tool
our computation,

^K&b
H,15

\2

2m

E
R
dx

]2

]x]x8
r b̄

a
~x,x8;b!U

x5x8

E
R
dxrbest~x;b!

~98!

and

^K&b
H,252

\2

2m

E
R
dx

]2

]x2
r b̄

a
~x,x8;b!U

x5x8

E
R
dxrbest~x;b!

, ~99!

and denote the respective energy estimators, obtained
adding the ensemble average potential energy, by^E&b

H,1 and
^E&b

H,2 , respectively. The second estimator, called in t
work of ‘‘type 2,’’ is always greater than the first, which i
called of ‘‘type 1.’’ Indeed, from Eqs.~95! and ~96! one
learns that
3-13



^K&b
H,22^K&b

H,15^E&b
H,22^E&b

H,152
\2 ER

dx
]2

]b̄2
r b̄

a
~x;b!

]B̄~x,x8;b!

]x

]B̄~x,x8;b!

]x
U

x5x8 >0, ~100!
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R
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the inequality following from the negative definitiveness
the Hessian matrix~82!. Now, relation~97! says that

^K&b
H5

1

2
@^K&b

H,11^K&b
H,2# ~101!

and so,

^E&b
H5

1

2
@^E&b

H,11^E&b
H,2#. ~102!

The reader might have already realized that the form
~102! is the key to the semisum theorem announced at
beginning of the section. It also implies that there is no ne
for the partial derivatives of the optimizing parameters,
order to compute theH-method estimator. For the case of th
HO-LVP, theH-estimator function has the expression

Ez,v
H ~x;b!5

1

2b
1V~x!1b3C4h6~bC!1

p2s2

8 E
0

1

dtV̄t,v9 @x

2sb3/2Bh2~bC,t !#h7~bC,t !, ~103!

wheres is defined by Eq.~90!.
To continue, we turn our attention to some converge

problems. The expected values of the potential energy
other diagonal operators~including the constant functions!
converge smoothly to the expected values computed w
respect torbest

+ (x) asb→`, fact that can be justified in mos
cases with the help of the dominated convergence theo
~see Theorem 2.24 of Ref.@34#!. However, this theorem can
not be used directly in the case of the expected values o
operators whose estimators explicitly involve the partial
rivatives ofB̄(x,x8;b). As we saw in the preceding sectio
their moduli may blow up on]Di so no dominating function
might exist.
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Using the asymptotic form~42! predicted by Theorem 3
one easily proves the following analog of Eq.~79!:

^E&b
H,2'Ebest2

\2

2m

E
R
c b̄~x!2i“Sb̄~x!i2dx

E
R
c b̄~x!2dx

. ~104!

Since the expression on the right-hand side does not ex
itly involve derivatives of the optimizing coefficients, w
have the equality

lim
b→`

^E&b
H,25Ebest2

\2

2m

E
R
rbest

+ ~x!i“Sb̄~x!i2dx

E
R
rbest

+ ~x!dx

,

~105!

where we setb̄5B̄(x,`) before integration. With the hy-
pothesis that the potential is positive in mind, we see t
^E&b

H,2 is the biggest estimator around, so all above defin
estimators are bounded byEbest for low enough temperature
Moreover, the estimator̂K&b

H,1 cannot be negative since

lim
b→`

^K&b
H,15

\2

2m

E
R

i“c b̄~x!i2U
b̄5B̄(x,`)

dx

E
R
rbest

+ ~x!dx

>0. ~106!

It follows that the first term from the relation~100! is
bounded byEbest whenb is large and again with the help o
Theorem 3, one may establish the result
m

\2
EbestE

R
rbest

+ ~x!dx> lim
b→`

ebEbestE
R
dx

]2

]b̄2
r b̄

a
~x;b!

]B̄~x,x8;b!

]x

]B̄~x,x8;b!

]x
U

x5x8

5M1

[ lim
b→`

E
R
dxFb

]2E~f b̄
0
!

]b̄2
2

]2c b̄~x!2

]b̄2 G ]B̄~x,x8;b!

]x

]B̄~x,x8;b!

]x
U

x5x8

>M2

[E
R
dx lim

b→`
Fb

]2E~f b̄
0
!

]b̄2
2

]2c b̄~x!2

]b̄2 G ]B̄~x,x8;b!

]x

]B̄~x,x8;b!

]x
U

x5x8

, ~107!
3-14
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where we used Fatou’s lemma for the last inequality. In t
respect, notice that the evaluation of the Hessian matrice
done atb̄5B̄(x,b) and that

b
]2E~f b̄

0
!

]b̄2
2

]2c b̄~x!

]b̄2
~108!

is positive definite at each pointx. In order for the inequality
to hold for arbitrarily largeb, when the energy Hessian ma
trix also becomes positive definite, the following condition
necessary:

]2E~f b̄
0
!

]b̄2

]B̄~x,x8;`!

]x

]B̄~x,x8;`!

]x
U

x5x8

50 a.e.

~109!

or otherwise, the argument of the last integral in the expr
sion ~107! becomes arbitrarily large on a set of strictly po
tive measure, which contradicts the fact that the integra
bounded on the entire low-temperature range. The equ
~109! can be realized either by the almost everywhere v
ishing of the derivatives of the optimizing coefficients as
the case studied in Sec. III, or by the vanishing of so
normal modes of the energy Hessian matrix. Consequen

lim
b→`

ebEbest
]2

]b̄2
r b̄

a
~x;b!

]B̄~x,x8;b!

]x

]B̄~x,x8;b!

]x
U

x5x8

52
]2c b̄~x!2

]b̄2

]B̄~x,x8;`!

]x

]B̄~x,x8;`!

]x
U

x5x8

>0

~110!

and the last function integrates toM2<M1. Now, we have

lim
b→`

FebEbest
]2

]x]x8
r b̄

a
~x,x8;b!G

x5x8

5
]2

]x]x8
@c b̄~x!c b̄~x8!#x5x8 ~111!

pointwise, but also

lim
b→`

E
R
dxFebEbest

]2

]x]x8
r b̄

a
~x,x8;b!G

x5x8

5E
R
dx

]2

]x]x8
@c b̄~x!c b̄~x8!#x5x8 . ~112!

A comparison with Eq.~95! produces
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lim
b→`

E
R
dxFebEbest

]2

]x]x8
rbest~x,x8;b!G

x5x8

5E
R
dx

]2

]x]x8
rbest

+ ~x,x8!U
x5x8

1M12M2 .

~113!

With these results at hand, it is not hard to conclude tha

lim
b→`

^E&b
H5 lim

b→`
^E&b

H,11
\2

2m

M1

E
R
rbest

+ ~x!dx

5E1~rbest
+ !

1
\2

2m

M12M2

E
R
rbest

+ ~x!dx

. ~114!

In an analog manner but using Eq.~96!, one proves

lim
b→`

^E&b
H5 lim

b→`
^E&b

H,22
\2

2m

M1

E
R
rbest

+ ~x!dx

5E2~rbest
+ !2

\2

2m

M12M2

E
R
rbest

+ ~x!dx

. ~115!

Summation of Eqs.~114! and ~115! produces the following
theorem.

Theorem 5 (semisum). The low-temperature limit of the
H-method energy estimator is

lim
b→`

^E&b
H5

1

2
@E1~rbest

+ !1E2~rbest
+ !#. ~116!

BecauseM1>M2, the various estimators introduced
this section can be put in the following order:

lim
b→`

^E&b
H,1<E1~rbest

+ !< lim
b→`

^E&b
H<E2~rbest

+ !

< lim
b→`

^E&b
H,2< lim

b→`
^E&b

T ~117!

@for the last inequality use Eqs.~88! and ~105!#. For conti-
nuity reasons, it is convenient todefinethe energy of the LVP
ground state density matrix as

E~rbest
+ !5

1

2
@E1~rbest

+ !1E2~rbest
+ !#. ~118!

If the decomposition in setsDi is true, the almost every
where vanishing of the derivatives of the optimizing coef
cients impliesM250 and we recover Eq.~79! as it should.
But in this very important case, maybe more significant is
fact thatE1(rbest

+ ) and E(rbest
+ ) are above the true groun

state energy and therefore LVP is able to provide a va
3-15
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tional energy which is better thanEbest, the best energy
predicted by the variational centroid based techniques.

VI. THE FREE PARTICLE REFERENCE CASE
AS THE BASIC PROTOTYPE

To summarize the results obtained in this paper in o
sentence, the dependence of the density matrix with the
ordinatesx andx8 is reproduced by the LVP approximatio
in a significantly better way than the dependence with
inverse temperatureb. This is why theH-method estimator
behaves in a better way than theT-method estimator. It is
then interesting to compare the variational centroid met
with the LVP method for the simple case when the refere
system is the free particle one, so thatV8(x)[0. The point is
that in this case we can leave any parameter optimiza
issues aside.

Letting s5A\2b/m, the LVP density matrix approxima
tion takes the form

r0
PA~x,x8;b!

r f p~x,x8;b!
5expH 2bE

0

1

EV@x~ t !1sBt
0#dtJ

5expH 2bE
0

1

V̄t,0@x~ t !#dtJ , ~119!

where

V̄t,0~y!5E
R

1

A2pG0
2~ t !

expF2
z2

2G0
2~ t !

GV~y1z!dz,

with G0
2(t) defined by

G0
2~ t !5s2E~Bt

0!25s2t~12t !.

This is the zero-order approximation of the so-called par
averaging method@24#.

The variational centroid expression for the diagonal c
troid density matrix is@7#

rc~ x̄;b!5~2ps2!21/2e2bK( x̄), ~120!

where

K~y!5E
R

1

A2ps2/12
expF2

z2

2s2/12
GV~y1z!dz.

The question we want to answer is which one of the f
mulas ~119! and ~120! provides a better description of th
physical system. To this end, notice that the spread in
partial averaging formula is on average twice as large as
one for the centroid approximation,

E
0

1

G0
2~ t !dt5s2/652~s2/12!.

This is so because the centroid position is defined as a
average, being the unique valuex̄ around which the fluctua
tion *0

1(Bt
02 x̄)2dt of a path is minimized. It is therefore
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expected that the centroid approximation behaves in a be
way than the zero-order partial averaging formula as far
the ‘‘direct’’ finite-temperature partition function and the re
latedT-method estimator are concerned. This should be t
even if the analysis performed in this paper showed that
high-temperature and the low-temperature limits are
same for the two methods. However, thisdoes not meanthat
the centroid formula gives the better description of the s
tem. To the contrary, we assert that by means of
H-method estimator, the zero-order partial averaging form
provides the better description of the system as far as
average energy~and by integration against temperature, t
ratio of the partition functions at different temperatures! is
concerned. We shall present numerical evidence suppor
our claims by analyzing a simple case of a periodic mono
mensional potential. We choose a periodic potential beca
in this case the low-temperature limits of both the part
averaging and the centroid formulas are well defined. N
ertheless, the reader should be aware of the fact that the
particle reference is the worst scenario for LVP as to
advantage over the equivalent centroid approximation.
the HO-LVP theory, the value ofGv

2 (t) is controlled by the
spread of the best fitting Gaussian and to a less extent by
temperature. Eventually, for low enough temperatu
*0

1Gv
2 (t)dt equals the spread of the best fitting Gaussian,

this also happens for the centroid based approximatio
Therefore, the latter’s advantage is diminished.

Let us consider a monodimensional periodic potential
period 2L and let

V~x!5(
kPZ

vke
ikpx/L ~121!

be its Fourier series. By the reality of the potentialV(x), we
have v2k5vk* . By Theorem 3, the low-temperatur
asymptotic of the zero-order partial averaging density ma
is

r0
PA~x,x8;b!'exp$2@S~x!1S~x8!#%exp~2bv0!/A2L,

~122!

where

v05
1

2LE2L

L

V~x!dx

is the cell average of the potential and where

S~x!5
2mL2

\2p2 (
kPZ,kÞ0

vk

k2
eikpx/L. ~123!

Then, the low-temperature limit of theT-method estimator
for both the centroid and the partial averaging approxim
tions is

lim
b→`

^E&b
T5v0 , ~124!

while the low-temperature limit of theH-method estimator
for the partial averaging formula is
3-16
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lim
b→`

^E&b
H5v02

\2

2m

E
2L

L

exp@22S~x!#i“S~x!i2dx

E
2L

L

exp@22S~x!#dx

.

~125!

For a periodic potential, a state is calledboundingif its
expected energy is strictly smaller than the potential avera
It follows that the centroid methodfails to predict a bound-
ing ground state for the periodic potential. To the contra
the zero-order partial averaging formuladoes predict a
bounding ground state by means of theH-estimator. The pre-
dicted ground state energy is shown in Fig. 4 for the cas
the periodic potential

V~x!50.5@11cos~2pnx!#

and is plotted as a function of the frequencyn. Again we use
atomic units and consider a particle of massm51. The exact
ground state energies were computed with the help of
Rayleigh-Ritz variational principle by expansion in a Four
series. One notices that theH-method energy is in good
agreement with the exact result in the range of high frequ
cies, but extrapolates tov0/2 instead of 0 in the low fre-
quency range.

It is instructive to study the behavior of the finite
temperature energy estimators for the periodic potential~we
setn50.25). Because in practice one stops the calculati
the first time the energy fails to decrease with the tempe
ture, Fig. 5 suggests that the centroidT-method estimator ha
a better behavior than the corresponding LVPT-method en-
ergy, even if their low-temperature limits are the same. Ho
ever, the LVPH-method estimator has an overall even bet
behavior, providing the closest answer to the exact energy
the investigated range of temperatures. The exact ene
were computed by numerical matrix multiplication~see for
instance, Ref.@35#!.

VII. CONCLUDING REMARKS

The local variational principle is alleviating some of th
disadvantages of the GBF principle. Specifically, it mak
better use of simple reference potentials to produce accu

FIG. 4. The ground state energies given by the low-tempera
limits of the T-method estimator and theH-method estimator are
plotted together with the exact ground state energies for var
values of the potential frequencyn.
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diagonal density matrices. Moreover, the Trotter composit
method systematically improves the finite-temperature L
density matrix up to the correct value. Then, LVP alwa
gives a better ground state energy than the one predicte
the Gibbs-Bogoliubov-Feynman principle provided that t
H-method estimator is used. Finally, we conclude that
LVP gives a description of the physical system which is mo
accurate and more complete than the one provided by
centroid based approximations. I remind the reader that
situation was caused by the fact that there is no practical
of defining anH estimator for the latter methods. Since th
GBF principle becomes essentially a local approximation
the centroid space, it may be possible that by modifying
centroid idea, one might be able to construct a techni
inheriting the best features of the two methods.

Unfortunately, there are several drawbacks of the L
method~all of them being shared by the variational centro
techniques!. The first problem is the need for expensiv
pointwise local maximization procedures. However, they c
be approximately performed as long as the estimators of
evaluated properties do not explicitly involve the derivativ
of the optimizing parameters~both the T-method and the
H-method estimators are ‘‘stable’’ in this respect!. To under-
stand the second undesirable feature, let us imagine tha
slightly unbalance the double-well potential. Then, the b
Gaussian distribution that realizes the minimum of Eq.~48!
is unique and will be localized in the well of lower energ
Thus, there is a discontinuity of the method with respect
the balancing of the main wells of the potential. The LV
partially accounts for this problem with the help of a corre
tion factor@see Eq.~44!#, but the improvement is not alway
satisfactory.

Finally, let us notice that given a point (x,x8) in the con-
figuration space, the HO-LVP technique gives explicit info
mation about how the density matrix looks around this po
on a range established by the temperature and by the q
tum properties of the system. This information can be use
create optimal filters in conjunction with standard semicl
sical approximations for the thermalized quantum dynam
correlation functions. In this respect, as discussed by Mi
@36#, the semiclassical Van Vleck or Herman-Kluk propag
tors in the initial value representation could be effective
used in quantum simulations for sufficiently large syste

re

s

FIG. 5. Values of the partial averagingT estimatorEb
T , partial

averagingH estimatorEb
H , centroidT-estimatorEb

C , and the exact
energyEb

ex as functions of the inverse temperatureb in a logarith-
mic scale. Atomic units were used for energy andb.
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and for chemically relevant times if not for the associa
‘‘sign problem.’’ This is generated by the integration over t
initial conditions and can be alleviated by the use of filteri
techniques, which are also advantageous because the
quire only local information about the density matrix for a
optimal implementation. Though a final decision as to
feasibility of this idea awaits future detailed work, I antic
pate that this local~analytical! information can be quantita
tively furnished by the HO-LVP technique under the form
a ‘‘built in’’ filter.
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APPENDIX: DEFINITION OF THE H FUNCTIONS

h0~c!5)
k51

`
1

A11c2/k2
5A pc

sinh~pc!
, ~A1!

h1~c,t !5 (
k51

`
1

k21c2
sin~kpt !2

5
p

4c

cosh~pc!2cosh@pc~122t !#

sinh~pc!
, ~A2!

h2~c,t !5 (
k50

`
1

~2k11!21c2

1

2k11
sin@~2k11!pt#

5
p

4c2 H 122
sinh@pc~12t !#

sinh~pc!

1

sinhFp2 c~122t !G
sinhS p

2
cD J , ~A3!
o

s
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h3~c,t !5 (
k51

`
1

~2k!21c2

1

2k
sin~2kpt !5

p

4c2

3H ~122t !2

sinhFp2 c~122t !G
sinhS p

2
cD J , ~A4!

h4~c!5 (
k51

`
1

k21c2
5

p

2c

cosh~pc!

sinh~pc!
2

1

2c2
, ~A5!

h5~c!5 (
k50

`
1

@~2k11!21c2#2

5
p

4c2 Fp
cosh~pc!2

sinh~pc!2
2p1

1

c

cosh~pc!

sinh~pc! G
2

p

8c2F p

2

coshS p

2
cD 2

sinhS p

2
cD 2 2

p

2
1

1

c

coshS p

2
cD

sinhS p

2
cD G ,

~A6!

h6~c!5 (
k51

`
1

@~2k!21c2#2

5
p

8c2F p

2

coshS p

2
cD 2

sinhS p

2
cD 2 2

p

2
1

1

c

coshS p

2
cD

sinhS p

2
cD 2

4

pc2G ,

~A7!

h7~c,t !5
sinh@pc~12t !#

sinh~pc!

sinhFp2 c~122t !G
sinhS p

2
cD . ~A8!
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