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Local variational principle

Cristian Predeséu
Department of Chemistry, Brown University, Providence, Rhode Island 02912
(Received 29 July 2002; published 26 December 2002

A generalization of the Gibbs-Bogoliubov-Feynman inequality for spinless particles is proven and then
illustrated for the simple model of a symmetric double-well quartic potential. The method gives a pointwise
lower bound for the finite-temperature density matrix and it can be systematically improved by the Trotter
composition rule. It is also shown to produce ground state energies better than the ones given by the Rayleigh-
Ritz principle as applied to the ground state eigenfunctions of the reference potentials. Based on this observa-
tion, it is argued that the local variational principle performs better than the equivalent methods based on the
centroid path idea and on the Gibbs-Bogoliubov-Feynman variational principle, especially in the range of low
temperatures.
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I. INTRODUCTION
Piree(X,X"; B8) = \/ exp — (x—x")?
free 2mh?B 2h°B

The Gibbs-Bogoliubov-FeynmaGBF) inequality is a re-
statement of the second law of thermodynamics. However,
the motivation of the present work is the equally importantis the density matrix for a similar free particlB? denotes a
fact that the inequality provides a variational approximationstandard Brownian bridgesee pp. 40 and 41 of Rdf3] and
to the Helmholtz free energy. Historically, Gibbs first statedpp. 430 and 431 of Ref4]) and the expected value in Eq.
the inequality for classical systems, then Bogoliubov and1) is taken with respect to its underlying probability mea-
Feynman generalized it to quantum systems in the operat@ure.
and the path-integral formalism of quantum mechanics, re- For the sake of simplicity, we shall be concerned mainly
spectively. Perhaps at the expense of losing the originalith the monodimensional case, but the reader should ob-
physical significance, the local variational principle | de-serve that the theory is in no way restricted to this case. This
velop in this work is intended to be a mathematical basis fois so because the Feynman-Kiemula has a straightfor-
the design of more efficient computational methods dealingvard multidimensional generalization: one simply utilizes an
with statistical quantum systems, with special concern foindependent Brownian bridge for each physical degree of
their low-temperature behavior. To fully justify the need for afreedom. However, we explicity address various multidi-
local principle, we first have to give a short review of the mensional problems, whenever they significantly differ from
Feynman and Gibbs-Bogoliubov inequalities and at thisheir monodimensional version. As stated, the main theorems
point, we shall also introduce some notations of use throughebtained in this paper remain true for the multidimensional
out the paper. systems.

The path-integral formulation of the statistical mechanics The Fourier path-integrdFPl) implementation of Eq(1),
began with the Feynman’s realization at an “intuitive” level which we exclusively use in this paper, is due to Doll and
that the density matrix of a monodimensional quantum parfFreemar5] and is based on the exact representation of the
ticle is the expectation value of a suitable function of aBrownian bridge as a random Fourier series with the coeffi-
Brownian motion[1]. Feynman was actually working on the cients being independent identically distributeli.d.)
real time Schrdinger equation, but for the imaginary time Gaussian variables. To rephrase their result in the spirit of the
analog the theory was made rigorous by, Kaf the product Feynman-Kacrepresentation formula, i€} is the space of

being the well-known Feynman-Kaepresentation formula jnfinite sequencea=(a,,a,, ...) and
(theorem 6.6 of Ref[3])
X, X'; 1 h? al=
_PX5R) ,ﬁ) :Eexp[ —,BJ V| x(t)+ \/—'BB?}dtJ, Plal kl:[l w3 @
Piree X, X"; B) 0 m
@ is the (unique probability measure ofd such that the coor-
where dinate maps— a, are i.i.d. variables with distribution prob-
ability
X(t)=x+(x"—x)t
and u(ageA)= LJ e #2dz (3
N2mJA
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Equation(9) is in agreement with the Rayleigh-Ritz principle

for ground state eigenfunctions and, as an approximation,
can be arbitrarily sharpened by use of more accurate trial
potentials. By the inherent continuity of such problems, these

is equal in distribution to a standard Brownian bridge. Let USyood variational estimates of the ground state energy imply

introduce the path-averaged potential functional

_ 1 ~
U(x,x’,a;B)zJ V| x(t)+ > ayoysin(kat) |dt, (5)
0 k=1
where
2:2,8ﬁ2i
m2m k2’

and make the convention that whenexerx’, the primexis
dropped so thatl (x,a; 8) =U(x,x,a; B8). With this notation,
the FPI version of the Feynman-Kaepresentation formula
Q) is

p(X,X"; B) = pireeX,X'; B) deP[g]

xexf — BU(X,x",a;8)]. (6)

In his treatment of the Fhdich polaron problem[6],

Feynman constructed an upper bound to the free energy of

guantum system by means of the inequalisge formulas
(3.52 and(3.53 in Ref.[7])

FsF,;—Jr(U—U,;—)Ué_, 7
where, in generalQO)S,k'7 stands for the average
f dx f dP[aje AUsaAO(x,a; B)
R Q
(O)u= ®)

f dx f dP[a]e AUsxah)
R Q

The functionaUé(x,x’ ,a; 8) was taken to be of the fori(b)
for some trial potentiak/é(x) depending upon a set of pa-

rametersi?z(bl,bz, ... ), butthis is not a requirement and

good estimates of the Helmholtz free energy for the entire
low-temperature regime, fact hard to achieve by other means.
This helps explain the successful application of the Feynman
variational principle in a variety of theories dealing with the
evaluation of the thermodynamic properties of quantum sys-
tems[9-14].

The Gibbs-Bogoliubov inequality15,16 provides the
following bound to the free energy:

TR -FADe A

F<Fi+

— , (11
Tr(e™ PHy)

which for spinless patrticles is proven to be equal to the one
given by the Feynman inequality’], whenever the func-

tional Ué(x,x’,g;ﬁ) can be cast in the form of the E¢p)
for a given trial potentiah/é(x). In this situation one talks
about the GBF inequality and of the corresponding varia-

tional principle consisting of the minimization of the right-
I”éland expressions in the formulé®d and(11) on the set of

parameters. The reader should not conclude that the Gibbs-
Bogoliubov inequality is automatically weaker than its path-
integral counterpart. For instance, in the case of a fermionic
system, the Gibbs-Bogoliubov inequality is still true if the
trace is restricted to the Hilbert space of antisymmetric func-
tions, with the slight requirement that the trial Hamiltonian
Hé be totally symmetrical under the permutation of identical
particles. However, there is no known path-integral equiva-
lent to the resulting inequality, the difficulty being related to
the so-called fermionic sign problefd7]. It is for this rea-
son that we shall restrict the development of our local varia-
tional principle to spinless systems.

The GBF usefulness depends upon our ability to analyti-
cally compute the integrals on the right-hand side of &j.
at least the ones with respect to the Fourier coefficients. This
effectively restricts the choice of trial potentials to a handful
(in most cases a quadratic potentiahd it is in poor match

essentially any function satisfying some mild integrability with the fact that the Feynman estimate is global, involving

conditions can be utilized in the Feynman inequality.
As argued by Feynmarsee Chap. 11 in Ref8]), the
zero-temperature limit of the inequality) is

07y1 40
(il by)
T 0, 0
(dpl b
whereH is the Hamiltonian of the systenag is ground state

energy ofH, and ¢} is the ground state eigenfunction of the
trial Hamiltonian

©)

=€q,

K2 52

Hf—ﬁE‘FVE(X). (10)

an integration over the physical coordinates. We thus arrive
at the first motivation for our work: a local fittingpointwise

in the configuration spageas opposed to a global one,
would make more use of a simple reference potential. Then,
a pointwise approximation of the density matrix can always
be improved by other means than the use of more compli-
cated trial potentials, the default choice being the Trotter
composition rule[18]. Finally, we will show that the local
variational principle developed in this work provides infor-
mation about the density matrix, information unattainable
from GBF. Our perspective on the computation of the density
matrix is thus changed: instead of seeking better reference
potentials, we try to find the variational principle which
makes the best use of a given reference potential.
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Il. THE LOCAL VARIATIONAL PRINCIPLE AS A LOWER (X" B)=pAX X3 ), (16)
BOUND FOR THE FINITE-TEMPERATURE DENSITY
MATRIX where

The purpose of this section is to define the local varia- o
tional principle (LVP) and further justify its importance. In p%(x,x’;ﬁ)=pé(xixliﬁ)e>(p[ _BJ APl i)l
addition, we shall consider the particular case of LVP when Q o
the reference potential is the quadratic one and compare this
case with the centroid based approximatidi®,19-23, x[U(x,x’,E;B)—Ué(x,x’,g;ﬁ)]}. (17)
particularly with the approximation based on the effective
frequency low temperatur&FLT) propagatof21], which is
the GBF analog.

The Gibbs-Bogoliubov-Feynman inequality is a cons
guence of Jensen’s inequality and | remind the reader th
latter’s statementsee p. 14 in Refl4]):

Theorem 1 (Jensen’s inequality) ({2, P) is a probability
space, if gQd—(a,b) is integrable, and if F is convex on
(a,b) with —c<a<b=o, then

This inequality is the cornerstone of the variational methods,
e_providing a bound from below to the density matrix. Special-
ged versions of the inequality were considered before
whether as a starting point for the definition of the partial
averaging method24] or in the context of the Feynman-
Kleinert variational-perturbational theof25,26. We should
remark here that the nonnegativity of the density matrix,
which stems from the reality of the path-averaged potential

functional, played an important role. Therefore, the inequal-
f Feg dP?F(f gdP). ity is not true for general compleg. The local variational
inequality(16) implies the Feynman inequality). The latter
By default, whenever we apply Jensen’s inequality in thiscan be deduced by setting-x" in Eq. (16), integrating over
work, it is understood that the convex function is the expo-X, working along the same lines as in E¢54) and(15), and
nential F (x) = exp(—X). finally using again Jensen’s inequality to obtain
To begin with the definition of the local variational prin-

ciple, let us perform a change of measure in Ej.of the CBF— o pFL pé(X;,B) , —
form e Pr=e P Rdx efBF{j exp — B de(x,Eﬁ)[a]
. — . A 7,BU/% , ',;;B) _ , _
p(X,X"; B)=pireel X, X ,,8)fﬂdp[a]e b % X[U(x,a;ﬁ)—UE(x,a;ﬁ)]}
< _ I A R I A , ,
exp{— BLU(x,x",a;8) —Uy(x,x",a; 8)1}, = e e~ AU~ Do, 19
(12)

, L= . _which produces Eq.7) upon taking the logarithm.
whereU,(x,x",a;8) is any measurable function depending  Eor the rest of the paper, we shall only be concerned with

upon a set of parametebs= (by b, . ..) such that the case when the functiondl(x,x’,a; 8) is the path aver-
o ) B age of some reference potential depending upon the set of
pé(x,x’;ﬂ)=pfree(x,x’;ﬁ)f dP[a]e” AYpxx"2B) parameter$,
Q
(13 _ 1 i
UA(x,x",a;8)= | VA x(t)+ D, aosin(kat)|dt.
has an integrable diagonal. Defining a probability measure o A fo ol X(V k=1 cnsintkart)
by the relation (29
, —  PrreeXX"1B) _pure o — The reference potential;-is assumed to be laoundingpo-
dp(x,x',E;ﬁ)[a]: / —e AU AR d P a], tential, with a discrete spectrum and a unique and strictly

X, X"; - ! . .
Pil 2 positive ground state eigenfunction. We shall denote its

eigenfunctions byﬁ%(z) and the corresponding eigenvalues
we may rewrite Eq(12) as by e Taking the supremum in Eq16) over the set of

parametershT produces the sharper LVP,

(14

pOXX' 3 B) = pp(X.X'; B) fﬂd Pl bl @] .
P(X.X"; B)= ppes(X.X"; B)=sUppp(x,x";B).  (20)
xexp{— BLU(xx',2;8)—Ug(x.x' . 8)]}. ’
(15) We say thatp,es(X,X";B) is the best approximation of the
density matrix in the sense of LVP. The extremum of the

Now, use of the Jensen’s inequality producesltival varia- ~ Maximization problem(20) is attained on some parameters
tional inequality b=B(x,x’,8) which generally are functions of position and
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temperaturdin case of multiple maxima, choose arbitrarily is a convolution of the original potential with a Gaussian of
one of them and as a direct consequengges(X,x";B) is  width
no longer the density matrix of a trial potential.

At this point, it is useful to consider the special case of
LVP when the reference potential is the harmonic oscillator
(HO) one. The method will be termed HO-LVP. | only
present the monodimensional version as a clear suggestion ghd is called a Gaussian transform of the potential.
how the inequality(20) can be employed. The multidimen- The inequality(20) simply states that
sional version as well as the specific numerical implementa-
tion and the related problems will make the object of a sepa-

p(X.X": B)=pz ,(X.X": B)
rate paper. The most general monodimensional quadratic i , i
potential has the form so that, for each pair of point(x’) the maximum of the

right-hand side expression is attained on some optimum val-
ues of the parameters=2(x,x";B8) andw=Q(x,x"; B).

| do not discuss here how the HO-LVP technique can be
numerically implemented for practical applications. With the
where the translational varialiteand the frequency are the  sole difference that there are monodimensional integrals
parameters to be determined by the local variational prinagainst the parametérto be computed numericallfa trac-
ciple. Straightforward but lengthy calculations by means oftable problem, the HO-LVP is on par as regards computa-
the FPI formulation give the following HO-LVP approxima- tional difficulty with the centroid based metho20-23
tion for the density matrix: and it is amenable to similar approximatiotsee Ref[11]

for an examplg They all involve local minimizations and

28h?

°m

r2(t)= h.(BC,1) (25)

V. (0= 3 mow?(x- 22 @y

P o(X.X";B)

1
=h C)exp[ — = B%B?h(BC)
Pree(X,X"; B) ol ZIB P

1 1
- §B3A2h6(ﬁ0) + 532C2h4(,8C)}
><exp{ —Bfoldtvt,w
2h%
—\/ 2B Bh(BC.Y)
w2m
2h%
—\/ 32B"Ahs(BC,1)
mm

X(t)

. (22)

In the above,

2%12 mw?
B=\ S (x+x'-22),
T°m T

272 me?
A= T—(X—X/).
T“m T

(23

integrations in the configuration space, respectively, in the
centroid space.

Rather, we shall emphasize the differences between such
methods. Since it is required that the density matrix of the
reference potential be analytically known, a common feature
of the methods is the fact that only simple references, as for
instance the quadratic potential reference, are computation-
ally feasible. Therefore, it is desirable that the approximation
which makes the better use of the simple reference potential
be employed in actual simulations. As such, HO-LVP has
two important advantages over EF[Z1]: (a) it can be ar-
bitrarily improved by Trotter compositiofl8] and (b) it
gives an approximation to the true density matrix, which
provides more information about the system than the varia-
tional approximation to the centroid density matrix.

Because the first property is clear, we shall be mainly
concerned in this paper with proving the second assertion. To
this point, we notice that the high-temperature limit of any
density matrix is the classical one. However, as the tempera-
ture is lowered, the discrepancy between the classical and the
quantum density matrices increases because the thermody-
namic spread of the paths entering the Feynman{&anula
also increases. In fact, if the number of variables used to
parameterize the paths is kept constant, the thermodynamic
energy estimator for nonvariational methods such as discrete
path integralDPI) methodg27-3Q or FPI method$5] ex-
trapolates to the classical energy in the low-temperature limit
too [31], a phenomenon dubbed “classical collapse.” Gia-
chetti and Tognetti9] as well as Feynman and KleingtO]

Even thoughA, B, andC are in fact functions o, z, x, and  noticed that this is not true of the variational methods based
x', we do not write their arguments explicitly in order to ypon the GBF principle. Following their line of thought, one
save typographical space. Thefunctions are tabled in the may argue that the low-temperature limit of the energy esti-
Appendix. In addition, mator for the EFLT centroid methddee Eqs(2.34), (2.35),
(2.41), and(2.42 of Ref.[21]) is

dz {2 A2 )
Ian’MWZ
(24) (62,12,

Vio(X)= LRV(X+ 2)

1 { z?
exp —
V2aT3(t) 2T2(1)

€0,
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i.e, the expected energy of the best Gaussian wave packétinctions and the eigenvalues of the perturbed Hamiltonian
[Remember thaﬁsgw(x) is the ground state eigenfunction of ~ ~

the reference potential given by E(1)]. This is a quite Hy =Hpt AV () = V5(x)] (26)
remarkable fact because the harmonic oscillator is known to ] ] o ]

be a good approximation of the potential surface around th&s given by the first-order Rayleigh-Sctiger perturbation

main local minima. theory are of the form
However, one very important aspect of the centroid den- o
. s Cron . . . . K K .
sity matrix p°(x;8) is that it bears no direct connection to ﬁbEA(X)“d’E(X)_A;k Cki¢IE(X)a (27

the true density matrix. For instance, givefi(x;3), one
cannot compute exactly the ensemble average potential epéspectively

ergy
e~ ey MV —Vildp), (28)
ﬁ%p(x;ﬂ)V(X)dx

, provided that the eigenfunctionéig(x) are chosen such
j p(x; B)dx that the perturbatiot(x) — Vi(x) is diagonalized on each
i degenerate subspace. Lettifiy ={i eN:e'g=e§} and vy
though useful approximations are knoW22]. As far as the =<¢§V—Vﬁ #y), the exact expressions for the coefficients

total energy is concerned, this can be exactly evaluated with,; are (see Chap. 5 in Ref32])
the help of theT-method estimatofsee Sec. V for defini-

tion). But up to some functionals of it, as for example, the Vi ik
partition function, this is the@nly propertythat can be com- Cui= K €57 €5
puted exactly once the centroid density matrix is known. b ~b
Clearly, there is ndd-method estimator for the centroid den-
sity matrix. Things are totally different in the case of the - 1 VkjVii ik -
local variational principle because this provides an approxi- K i = 5B, d— & €~ % Fi7 Vkko
; . ; . 165k €, €
mation for the true density matrix and so the expectation
values of different operators are readily available. Even =0, e'g=e% —— (29)

more, we shall later show that the zero-temperature limit of
the H-method estimator is a grognd state energy estimate | \varn the reader that Eq&27) and (28) areexactto the
alwaysbetter than the corresponding centroid one, the lattefi <t order in\. for instance
being matched by the low-temperature limit of the LIP ’ '

estimator. | hope this would be enough evidence to convince PLENLS
the reader that LVP provides the better description of the lim b"‘)\ b:<¢%|\/_vé| ¢%>_

physical system. A—0
From the above discussion, we infer that the quality of a

variational approximation is dictated by its low-temperature With these preparations, we are ready to prove an impor-

limit, and in the following section we shall establish what tant lemma.

this limit is in the case of the local variational principle. The ~Lemma 1

reader should not forget that LVP provides a variational

bound from below to thdinite-temperaturedensity matrix f A "By — - "

and that it is intended as an approximation method for this A QdP(X’X,’b’B)[a][U(x,x aB) = Ugxx’ 2 6)]

density matrix. Therefore, LVP is in no way limited to the

computation of the ground state eigenfunction, which is S~ K i, K, o\ 4 ek
however our object of interest for the following section. kgo j;k Cigl (%) Bp(X') + b (X") hp(x) ]~ 7%
“ k
Ill. THE EIGENFUNCTION REPRESENTATION > ¢%(x)¢%(x’)e*"*€
OF THE LVP k=0
In order to establish the low-temperature limit of the local Sk K, o ok 'k ek
variational principle, as well as to show that the local varia- kZO Bp(X) P (X )|V — Vil dpye %
tional inequality(20) can also be interpreted as a generaliza- +8 = (30
tion of the Gibbs-Bogoliubov inequality, we need to express E k K iy o Ber
a - . . . 2 D (X) P (X" )e "
p,(X,x";B) in terms of the eigenfunctions and the eigenval- k=0

ues of the potentia‘i/é(x). We again develop the theory in

full generality, rather than discussing the special HO-LVP
case. ” ;) _ r . / A
In anticipation of the final result, let us see that the eigen- Up(xx",a;8)=U(x,x",a; B) — Uy(x,x",a; B),

Proof. Write Vi{(x) =V(x) — V(x) and
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so that
n - 1 " -
UE(x,x’,a;,B)zf Vi X(1) + 2, agoysin(kart) | dt
0 k=1

Then consider the equality

1-exd —\BUL(X,X',a;8)]
- .

BUL(x,x",a; 8) = lim

A—0

Remembering the definitiofil4) of the probability measur®;

, b,B)[g] and the eigenfunction series representation of a
density matrix, we learn that

(X, X

1 kg ¢%X e o E d)b x(x)¢b W(xHe” Bes
Bj dP(X o b,(;)[a]U%x x',a;8)=lim — _ | -
A—0 A
Z %x e~ Bey

whereq&%x(z) and 6%)\ are, respectively, the eigenfunctions * ) K

and the eigenvalues of the perturbed Hamiltor(2). fRT(EZ)(X?B)dXZ IZO <¢%|V—Vﬁ ¢%>9 Py
For small\, we may use the Rayleigh-Schiinger per-

turbation theory to compute the spectrum of the perturbed

Hamiltonian Hé—’x. The reader should realize that the only

corrections needed are the ones to the first ordar (which ~ Therefore,

are exactly given by the Rayleigh-Schdinger perturbation Theorem 2The eigenfunction expansion form of the local

theory), since the others will cancel upon letting go to  variational inequality(20) is

zero. To conclude the proof, use the formul@g) and(28)

=Tr[ (A —FADe A, (36)

and explicitly compute the limit in Eq31). [ | p(x,X"; B)=pp(X,X"; B) = pr(X,X; B)
Lemma 1 together with the well-known series representa- (1) @)
tion of a density matrix " F{ Ty (XX, 8)+ BT, (X,X’;B)]
exg — - - .
o ) P(X,x"; B)
/ ’. — E k K o\ a—Be-
pE(X1X 1B) e ¢B(X)¢B(X )e b (32) (37)

Before continuing, the reader is advised to ponder over
the value of this theorem by analyzing the HO-LVP approxi-
mationp? ,(x,x’;B) compactly given as enonodimensional
integral against by Eq.(22). The same HO-LVP approxima-

essentially solves the eigenfunction representation problem)
The functions

. . k
T%)(X,X';ﬁ)z_#k Cil PR BHX )+ p(x ) dE(x)]e P tion can be exactly written in terms of the eigenvalues
j
(33 ) 1
€ ,~ho|kt 3
and ’ 2

and the eigenfunctions

TP00x8)=F S0 NV Vifape o,

0w 1/4

_qp/ M 2
(34) (;');w(X)Z(Zkk!) llz(ﬁ ef /2Hk(§)
respectively, have the following obvious properties: of the harmonic oscillator reference potent{@ll), in the
form given by Theorem 2. Herel=(myw/h)YA(x—2),
1)/, _ while H,(x) stands for the respective Hermite polynomial.
f T (X B)dx=0 39 Of course, the eigenfunction representation is of no practical

use, but it allows us to study the low-temperature behavior of
and the density matrix.
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In the form(37), the local variational inequality is readily lim fex 4 (dUV=VH D) 102 (x X' -
seen to imply the Gibbs-Bogoliubov inequality. Indeed, set- Bﬂx{ HA (e ol #6)) 1o X" B}
ting x=x', integrating ovex and applying Jensen’s inequal- 0 o
ity produces = ¢ (X) P (X" )exp[ —[Sp(x) + Sp(x") ]}

Looking at Eq.(41), we see that the factor containing the

e*Ber*BFéJ prE(X"B,) _%(x) functions simply disgppears in the original GBF_equa-
R g BFy tion because of the identity35). Thus, our theory brings

some additional information about the shape of the ground

F{ T(gl)(x;,B) +BTf)2)(x;B)] state density matrix, and we shall later prove that the correc-

xXexpg — ; tion factor is always an improvement in the energetic sense.
Pr(%:B) After an obvious simplification of the terms explicitly in-

diate.
Theorem 3 The asymptotic formula gb,es(X,x";B) at
low temperature is

, T (A—ADe A5
>eﬁFbexp{ - B >

volving the potentia}\/é(x), the following theorem is imme-
= . (39
Tr(e PHb)

where we used the relatioii35) and(36). The last equation o 40 0, _ ,
produces the Gibbs-Bogoliubov inequality upon taking the Poes{X.X"18)~ i,(X) (X ) exp{—[Sy(X) + Sy(x) ]}
logarithm. Moreover, since we performed the same opera- _ 0\ 11— —
tions as for Eq(18), we also get a proof of the equivalence X exp — BE(¢y) llo-gixx =) (42)
between Feynman and Gibbs-Bogoliubov inequalities, proynere
vided that the form(19) for the trial potential is assumed. It
is in this respect that we regard LVP as a generalization of h? ) )
both aforementioned inequalities, even if the best density E(y)= . Sl VEOOIE+ 00V [dx (43)
matrix predicted is not necessarily derivable from a potential.

The remainder of this section deals with the low-anq the functions Bx,x’,) are computed by the following
temperature  behavior of the LVP density matrix rgcipe

Poes(X.X"; ). An immediate corollary of Lemma 1 is the (1) minimize the functional E¢Y). If it is unique, the

equality — . . . .
@Iue of b on which the minimum is attained becomes
. , _ = , = B(x,x",©)V x,x" eR.
;'an'g deP(x,X’EB)[a][U(X'X & 8) ~Up(x.x",a;8)] (2) If there are multiple minima of Eﬁ%), pick an arbi-
trary one among those that further maximizes
0 AN ’
_<¢E|V—V3|¢E>’ = Sp(X) +S(x), (39 B(X) (X" )expl — [ Sp(X) + Sp(x) 1}
where at each pair of pointgx,x’).

Let us analyze a little more closely what the last theorem
Lk o A says. Assume that we are in the simple case when the mini-
Sx0=S d)E(X) <¢E|Vk_ V? Po) (40) Mum of the functionaE(qﬁ%) is unique. Up to a normaliza-
k=1 ¢ (%) €, € tion factor, Theorem 3 predicts the following approximation
to the ground state eigenfunction:
is a function which does not depend upon temperature. In ,
deducing Eq.(40), one uses the r;act thellat the gr?)und state W(x):qsg(x)ex _ i q&%(x) <¢%|V_Vﬁ d’%)
eigenfunction of the trial potentiaf(x) is not degenerate. b &1 (%) e '

Then, the asymptotic formula (44
Lo By~ 2% b2 X _ 3 here the optimal parametelosdo not depend upon the co-
P X X5 B) = ¢ (X) (X" ) exp — Bep) w P P P P

b b b b ordinates k,x’). Thus, Theorem 3 does not simply predict

implies the function ¢g%x), though the thermodynamic weight is
computed with respect to this function. An immediate ques-

a ’. 0 0/ ’ i IS i . I

pe(X,X"; B)=~ ¢ (X) (X )expl — [ Sp(X) + Sp(x') 1} tion is in place: What can we say about the quality of the

above eigenfunction? The quite remarkable answer is proved

Xext — Blect(dgV—Vi¢))]. (4D in the following section[see Eq.(79)], and says that the

expected energy of,(Xx) is always smaller or equal to the

| warn the reader that here and in the remainder of the papexpected energy osb%(x). In other words, LVP predicts an
the sign~ is used to denote bbw-temperature asymptotic energetically better ground state eigenfunction, and we shall
form, its rigorous interpretation being prove in Sec. V that we can recover its expected energy by
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use of theH estimator. Finally, for multidimensional sys- and

tems, LVP predicts aorrelatedapproximation of the ground )

state eigenfunction even if the reference is a sum of mono- B h 2 2

particle potentials. The low-temperature density matrix given E)= JR EHV‘#(X)H +¢(X)V(x+2) |dx. (47
by Eqg. (42) has no GBF equivalent and justifies our claim

that LVP is a separate and more powerful principle. Also, we shall use instead ofb, and let.4 index all the

pairs (z, ,ga) on which the minimum of the problem
IV. THE EXPECTED ENERGY OF THE LVP GROUND

STATE DENSITY MATRIX Epeseinf EL(¢2) (48)

Let us remember that our special interest for the ground zb

state density matrix is due to our experience that the varioug achieved. The new system of indexation makes the old one

approximations used to compute the finite-temperature statisyperfluous, so we shall drop some indices. We define
tical properties of a physical system worsen in the low-

temperature regime. By the intrinsic continuity of the varia- = K (x—2z,) <<1>2|VZ _Vé |¢5>

tional methodgsee Sec. V for further clarificationsa good S, (x)=>, — « “ @

approximation of the ground state density matrix necessarily k=1 ¢2(x—za) €

implies a good approximation for the finite-temperature den-

sity matrix. In this section, we shall analyze the expectecand

energy of the ground state density matrix predicted by Theo- 0

rem 3, but we assume a special form of the density matrix Pa(X)= P o(Xx—2,)exd — S,(x) ], (50)

which is encountered in practical applications whenever the . ‘ ) . ]

potentialV(x) has a finite number of local minima. whereg¢,(x) ande,, are, respectively, the eigenfunctions and
There is one special parametes which accounts for a the eigenvalues of the trial potentMEa(x).

translation and which we add to the list of parameﬂ?rs With these notations, Theorem 3 takes on the special
=(by,b,, ...). From now on, we shall conform to the con- form.

vention that if not written explicitly in an expressioby is Theorem 4If Eq. (45) is assumed, then the asymptotic
assumed to be part of the list of parametdrsie., b  formula of ppes(x,x";3) at low temperature is

=(bg,b; ...). Otherwise, ifby does appear in an expres- . . ,

sion, the listb is assumed not to contain it. The importance Poes(X,X"s B)= XA~ BBpesdPpes(*x"),  (51)
of this parameter consists of the fact that, if it is included, theWr1ere B,oc i the defined bfq. (48) and

optimizing coefficientsg(x,x’;oo) usually become constant

(49

—€,

on certain regions of the configuration space, which are iden- Phes{ X, X") = SUP ¢, (X) P (X"). (52
tified with the main wells of the potential. Of course, for an acA
n-dimensional system, there aretranslational parameters, ) . ]
one for each dimension. To appreciate the importance of the translational param-
To begin with, we replace Eq19) by the slightly more eterz let us perf(_)rm the minimization in Ec_(.48) in two
general form separate steps. First, we construct an effective potential
. 0
, _ Vei(2)=inf E(¢p) (53
Uboyg(x,x',a;,B)= fo V| —bot+X(1) b
v and second, we compute

dt. (45)

+ 2, awsinkt) Epes=inf Ve((2). (54)
zZ

Accordlng to our conventlowg(x) does not depgnd explic- For monodimensional systems, it is usually the case that the
itly upon by, the value of this parameter, which sets theminimum of the first problem is attained on unique points
origin of the potential, being automatically determined by-— —- . - . .

. X ) b=B(z) while for multidimensional onegspecially for sys-
LVP. All our results remain true if computed with respect to ; ) o

S T tems in condensed phaghkere is usually a finite number of

the local reference potentialy, o(x)=Vy(x—bo). If the  minimizing parameters. The effective potential is in fact a
eigenfunctions Of‘/k; +(x) are ¢E +(x) and the correspond- mollification of the original potentiaV/(z), to which it con-

0 0 verges as the ratié?/m goes to zero. For systems in con-
densed phase, it is often the case that both the original and
—by) and eEO gze%. It is then convenient to introduce the the effective potentials have finitely many global minima,
two local quantities and in th|s se£t|o.n we shall a'ssu.me that cEh(.are arg finitely

many pairs ¢;,B;),i € 1N on which inf, ,E,( ;) is attained.
V,(X)=V(Xx+2) (46) A more general result will be proved in Sec. V. If we set

. . k k k
ing eigenvalues are, o then we haveqbb(J 5(X) = d(x

066133-8
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energy (au)

i

-1

2

0
z(au)

FIG. 1. A plot of the symmetric double-well quartic potential z(au)

(56) and of its associated effective potentiaBb). ) ) )
FIG. 2. A plot of the low-temperature density matrix predicted

by LVP. There are only two maxima instead of four symmetrical

— ’ 2. ° A (!
Di={(X,X") € R% ppes{X.X") = $hi(X) ¢hi(x")},  (55) ones, the true density matrix would present.

then the set®; are assumed to be disjoint except for their
(topologica) frontiers which are required to have measure
zero. It follows that the optimizing coefficients are constant
on the interior of the set®; and thatp|..(X,x’) is twice 1o
derivable with continuous derivatives on the same interiors, - 1 Hlo™(x-7z)]
yet continuous on the entire plafé. Therefore, the diago- S‘(X)_k:3,4 G 2Rk ko '
nal density matrixp,.s{X) as well as its square root have

similar continuity properties with respect to tdmgonalsets Wherec§: —0.539, c§=O.539, andc}lzcﬁ:0.0QZ. In gen-

Di", defined as the intersections of tBe's with the line of g5 it can be shown that all the coefficiemswith k>2n
equation x=x' [remember the conventionpyes(X)  vanish for any polynomial potential of rank at mosh,2

= ppes{X:X)]- . . _ _ while the coefficientg; andc, vanish for all potentials. The
The rest of this section deals with the evaluation of thefunctionsy;(x) have the form

expected energy gb,..(X,X’). To reinforce the proofs, we

study a simple example of a quartic double-well potential in 1

the context of the HO-LVP approximation, along with the wi(x)=ex;{— Ew(x—zi)z—si(x) , (60)
general approach. We shall et 1, and consider a particle

of massm=1 moving in the potential

the problem. The5(x) functions can be expressed in terms
of the Hermite polynomials as

(59

so that

1
V(X)ZE(X—A)Z(XJFA)Z, (56) Phes( XX )= max ¢ (X) i (X"). (61)
ie{1,2
whereA=1.5 (see Fig. 1L The reference potential is a qua- , ,
dratic one, of variable frequenay>0, In_ Fig. 21 one may see that the onv-temperatur_e den_5|ty ma-
trix predicted by LVP is symmetrical at reflection with re-
1 spect to both the main and the secondary axes. Though con-
V! (X)= Emwzxz. (57)  tinuous on the entire plane, the density matrix has a cusp
along the secondary axis. The sBtsare readily identified:
D,={(x,x"):x’<x} and D,={(x,x"):x">x} with the di-
agonalsD7={x<0} andD7={x>0}.
32— A2 3 Let us go back to the energy evaluation problem. The lack
E w)= 2+ +—+V(2). (59 of continuity of the first derivatives on the boundari#3;
z 4 2w 2 requires a careful analysis of the kinetic energy. We consider
two estimators,

The functional(47) can be worked out explicitly to be

Figure 1 also contains a plot of the effective potential

_ &
Vei(2)= inf Ej(w) , f -p(X,x") dx
»>0 A R dXdIX xex!
Kl(P):% (62)
and shows thai/.{(z) attains its global minimumEgg; fp(X)dX
R

=1.404 on the two symmetric pointg=—1.292 andz,
=1.292. The corresponding optimum reference potential fre-
guencies arev; = w,= w=2.584, equal by the symmetry of and
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Becausey,(X) is continuous on the entife by the way

1.0
= it was constructed, it can be proven thai(x) is in the
= Sobolev spac#iPAR), thus a permissible trial function for
& 0.5 . the ground state eigenfunction of the potenN&ix). For
‘g functionsy(x) in HYAR), the Rayleigh-Ritz principle states
“- cusp that
0= ¢ 1T 5 3
wlaw) 2 JRllvtp(x)llzdx fRV<x>w<x)zdx
FIG. 3. For the double-well quartic potenti&6), the approxi- €0= —— + (68)
mate ground state wave functioh(x) defined by Eq(65) has a 2m f 1//(X)2dX f z,b(x)zdx
cusp at the origin. R R

Consequently, the correct variational definition of the ki-
dx netic energy is given by the formul®2) and we have our
X=x' 63) first important result,

JRP(X)dX €0=E1(ppesy- (69)

(92
—p(x,x")
NG

hZ J]R
Kz(P):_%

where the derivatives are regarded as functions almost ever)'/:—Or the case of tk!e quartic potential, the exact vglue_s are
1.292 andE;(ppes) = 1.342. We see that our estimation

where defined and not as distributions. We shall denote b{0~

E.(p) andE,(p) the associated energy estimators, obtaine®’ the ground state energy is better than the one given by
by adding the expected potential energy. GBF, which isEpes= 1.404. We shall prove that this is no

A little thought shows that the following equality holds Mistake, and that the energy of the asymptotical low-

for all the points &,x’) in the first and the third quadrants of temperature density matrix predicted by LVP is always lower
the plane: than the one predicted by GBF. We do this in two steps: first

we prove thatE,(ppes) <Ez(ppes) and then thak,(ppes)

e XX ) =V ppacd X Cod X)), 64 <Epest-
Pbes(XX')= VPbes(X) Vhpes(X') (64 Integration by parts produces

In fact, the square root of the diagonal density,{(X),

N—1
which has a cusp in the origin as shown in Fig. 3, will play _f v (x)a—zlp (x)dx=£ 3 8[¢i2+1_¢i2](x_)
such an important role in our development that it deserves a g ax2 Tt 2 i< X :
notation,
; + | [V(x)?dx, 70
)= V. 5 [ 196001 70

In general, one may show that around each diagonal poiyhere the points; are separating two consecutive SBXS
(x,x) on the interior of some s@/", there is a small neigh- and D7, on which the diagonal density matrix takes the
borhood inR y Say the ba”B[é,(ny)], such that Eq(64) values (//i(x)z and l/ji+l(x)21 respectively' Notice that
holds onB[e,(x,x)]. Relation(64) need not hold for the . (x.)2=y,.,(x)? and that

diagonal points X,x) that are precisely on some frontier

dD{" but from the point of view of integration theory, this i 41X+ )%= (X +h)?
does not matter because the frontier has measure zero. Con-
sequently, the following equalities are true: for all positive and small enough or, otherwise,p;,q<{X)
=;(x)? for somexe D, contradicting the definition of
2 JH”V%(X)”ZdX the set. Therefore,
KlPoesd = om — ©0 R et =g xth)
P.(x)“dx X (xj)=Ilim H =0,
R h\,0
(71)
and
which together with Eq(70) proves that
(92
oo | 0S50 ax E L (Phesd = Ex(Pbest 72
Ko(ppesd = — 5= . 6
2(Ppesy 2m j (%) 2dx 7 For multidimensional systems, the same reasoning can be
R performed along the normailg; to the surfacegD{"NdD{"
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separating the seB® andD. The normaly;; is assumed We then multiply Eq.(77) by ¢i(x), integrate over the sets
oriented from theD” toward theD " set. Then, the analog of D{", sum the contributions of all sets and conclude that
Eq. (7)) is

N
— ° 2
V29?1 5y=0 on 4DFNIDT (73 72 Eljorpb“‘x)nvsﬁ(x)” o

E2(Ppes) = Ebest™ om
and the analog of E(70) is J Ppes{ X)dX
R

2 (79
= | 00Ag(x)dx= | [[V.(x)]*dx

R i Indeed, for the case of the quartic potential, one computes
1 _ E,(ppes) =1.372 which is seen to be lower thdByes,

ts ;] J8D700D7V[¢j(x)2—zpi(x)z]. vijdo, =1.404 but higher tharE;(ppes)=1.342. The relations
: ! (69), (72), and(79) combined give
(74
. . . . €0<E1(ppes) SE2(ppes) =<Ebpests (80)
proving again the inequality72).

Finally, let us show thaE,(pp <) <Epest. Becausap® is  which proves our previous assertion that the asymptotic den-
strictly positive, we can write any other eigenfunctigf{x) ity matrix predicted by LVP has a lower energy than the one
as the producf¥(x)¢2(x). By direct substitution, one can given by GBF. In fact, iff,cs<, the last inequality is strict
show that the functioi’(x) satisfies the following equation: €XC€pt for the case when the original potential and the opti-

mized trial potential are identical.

h? h?

- ﬁAfik(X)_ >mV In[ 62(x)2]- V(%)= (e — ) F(X). V. AVERAGE ENERGY AT LOW TEMPERATURE:
(75) THE SEMISUM THEOREM

The LVP approximation is intended as a technique for
computing finite-temperature properties of a quantum physi-
cal system, properties that are usually of the form

It follows then that

%2 h2 0 )
~ 5=AS (0~ 5=V N[ B0(x~2)2]- VS(X)
. fRdXPbes(X;ﬂ)o(X;ﬁ)
= A= z)( BV, — VE| 4. (76) (0)p=
k=1 I : ﬁlvdXPbest(X;IB)

The sum of the last series equals ) )
Such averages can be estimated for fairly complex systems

V(x) = V5 (x—2) = (¢ V, — V& | %) by Monte Carlo simulationg33]. The problem we address in

i ' i this section is the low-temperature limit of different energy
estimators. For operators which are diagonal in the coordi-
hate representation, for example, the potential en#&figy),
the estimating functio®(x) does not depend upon tempera-
ture and the zero-temperature limit is

by the completeness of the system of eigenfunction
{d)!‘(x);k;O} and the translational invariance of the inte-
grals involved, so we end up with the equality

h? h?
- - Ox—7)21.VS o
S=AS(0 = 5V In[$0(x=2)?]- VS(x) ﬁ @Xphe{X)0(3)
lim (O) 5=
_ V(v — 7 VT — {01 — | 40 B
_[V(X) VBi(X ZI)] <¢)I |VZi VBi| ¢I > (77) Bﬂm fRprges{X)
With the help of Eq(77), one can show by explicit compu-
tation that In this paper, we assume that the pointwise optimization
in the configuration space involved by LVP can be rapidly
%2 implemented by standard local optimization procedures, it-
o A% VX %i(X) erative methods or other approximations. Since this is a big

assumption by itself, estimators explicitly depending upon

Ui(X) the derivatives of the optimizing paramet@&éx,x’;3) are
: clearly out of question. In the remainder of this section, we
shall consider the important problem of computing the en-

(79) semble average energy with the help of the so-callednd
H-method estimating functions, both of which can be put in

: h?
el +H(IV, Vg o) — 5 VS(0]1?

ﬁZ
= { Epesi— ﬁ”VS(X)HZ Pi(X).
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a form that satisfies the aforementioned restriction. With reare to hold. The evaluation is done after any differentiation

gard to the zero-temperature limit, we are interested to learbut before integration.

whether we can recover fully or only partialB; (ppes), the There are a couple of energy estimators in literafGa,

best energy predicted by LVP. We shall prove that we recovedf which we shall consider the most important two: the so

Epest With the help of theT-method estimator, the semisum called T-method andH-method estimators. The first one is

of E1(ppes) aNdEy(phes) by the H-method estimator. The computed by temperature differentiation of the canonical

last fact is called theemisum theorem partition function,
We begin by considering some preliminary results. The

maximum condition(20) implies the equality

J
©f=— i [ prestxipiax. @9
J B | Jr
&—Hp%(x,x’;ﬁ) =0 V x,x'eR. (8D
b=B(x.x":5) With the help of Eq(81), one can show that
Another consequence of the same extremum condition is that
the Hessian matrix J .
— p(X; B)dx
72 (EyT= fHaﬁpB( A) 7
TP iB) (82 g 30 B)dx
J b-B(x';4) RO

is negative definite¥x,x’ € R. Moreover, the symmetry of

P%(X,X’§B) in the arguments andx’ implies the symmetry ~€xpression that is seemingly easier to compute since it does

of the minimizing functionsg(x x':B) in the same argu- not involve the evaluation of the partial derivatives of

ments. We then have the equal’ity’ B(x,x"; B) with respect to temperature. The low-temperature
limit is computed by replacing in formula(86) the

J— g9 _ asymptotic density matrix given by expressi@1), to pro-
—B(x,x";B) =—0B(x,x";B) (83  duce
X X
X=X X=X’
. T_
At finite temperature, because of the thermal averaging, it is ﬁllinx<E>ﬁ_ Ebest (88)

safe to assume that the optimizing parameﬁbsx’;ﬂ) are
nice functions in their arguments with continuous partial de- )
rivatives at least to the first order. This might not be true fori-€., the ground state energy we get by using Theethod
§(x x';%) which may be constant on the interior of some estimator coincides with the best energy provided by the ana-
setsD;, but vary suddenly at their frontier. log centroid pased approximations. L

For the rest of the paper, we shall assume giat (x,x') _ In the partlc_:ular case of the HO-LVP approximation, the
is in the Sobolev space>¥R?). Thus, the normgdefined diagonal density matrix takes the form
here by their squaje

m
. . 2 o(X;B)=\/——=h
Phesllo= deﬁqu’pbes(x,x’)2 88  ProXB=Y 2723 o(BC)

1 1
and X exp{ — E3332h5(ﬁc) + §B2C2h4(ﬂC)}
” ° 2 o 2 ° 2 o 2 oo 3/2
pbes”l_Hpbes“0+ ‘HZ[(apresg +(dx Ppesd ] xXexp —p Odtvtvw[X_O',B Bhy(BC,t)],
(85)
(89

are finite(for the case analyzed in the preceding section, it is
rather trivial to prove that these conditions are fulfijled/e h

. o ere
shall also assume the existence of the second derivatives E¥Y—
most everywhere. Some mathematical difficulties force us to

restrict the analysis to potentials bounded from below—thus, 212
positive by a change of reference. o’= P (90)
To avoid the excessive use of big vertical lines, we shall Tm

follow the rule that all functionsf(x,x’ﬂ;ﬂ) explicitly de-
pending uporb are evaluated di=B(x,x’;B) if the results  The T-estimator function has the expression
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o1 Voo 312 —(92
EZ,w(X’B)_ﬁ_F OdtVt_w[X—O',B th(ﬂc,t)] axzprS(X7X,;ﬁ)
1 1 2 2
_ Z P32 ’ 9" a I a '
7878 AV, I o BRI G )
1 1 _ _
a3 Z o2 " " "
aB%?Bh,(BC,1)Th,(BC,t) + 57 fo dtvy, ><aB(x,x i B) 9B(X,Xx ,,8). (96)

X X
X [x—oB¥Bh,(BC,t)]hy(BC,1). (91)

The H-method estimator is the direct expected value ofBY adding Eqs(95) and(96) and using Eq(83), we get the
the Hamiltonian, equality

f dXHPbes(XaX, B)
R

x=x'

32 52
[%Pbes(xnx,;ﬁ)_ Pbes&X,X’;IB)]

(E)d= (92 XX’

x=x'

ﬁﬁdpres(X;ﬁ)

9 7
a ) a .
= _axsz(X’X,"B)_ o Py, X";B)

x=x'

In computing the kinetic term of Eq92), the following
formula proves beneficial: (97)

Relation(97) shows that there is no need for the partial de-
x=x' rivatives of the optimizing parameteB(x,x’;8) againstx
or x" in order to evaluate the ensemble average energy by the
JBdXPbes(X;ﬁ) H-method estimator. We shall introduce two additional ki-

(93) netic energy estimators which serve as intermediate tools in
our computation,

92 32
) fRdX IxIX’ _E Ppes{ X, X"; B)
H fi
K)5=2m

We compute the expected kinetic energy as the semisum of
the twoidentical terms, because this way no derivatives of

g(x,x’;,B) appear in the final formula. By differentiation of 52 a .
Eg. (81) againstx’, we get the system of equations 52 deaxax’ pp(X.X";B)
<K>Z'l=ﬁ == (98)
& 5 IB(X,X"; j dx X;
— p%(X,X';,B)-I— :p%(x,x’;lg)(—ﬂ)zo R Poes{ X; B)
abax’ ab? ax’
(94)
and
and there is a similar one for the derivatives againgtrom
Egs.(81) and(94), the following equalities can be deduced
by explicit calculation: 52
dx— pp(%.X"; B)
92 K\H2— h? SR OX x=x' (99)
—— Pbes{ X, X"; B) (KYs™="2m ’
IXIX dXppes{X; B)
R
2 (5,2
= pe(XX'; B) — = pp(X.X"; B)
axax' " " a2

and denote the respective energy estimators, obtained by
a§(x,x’;ﬁ) ag(x,x’;,B) addllnzg the ensgmble average potentia_l energ;{,Ebg'1 a.nd _
X (95 (E)p“, respectively. The second estimator, called in this

e 23 work of “type 2,” is always greater than the first, which is
called of “type 1.” Indeed, from Eqs(95) and (96) one
and learns that
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Pz IB(x,X";8) IB(X,X'; )
ﬁzfdx p_(X'B) X X

x=x'

(K =(K)g ' =(E)*—(E)g™

=0, (100
deXPbes(X;:B)

the inequality following from the negative definitiveness of  Using the asymptotic forni42) predicted by Theorem 3,

the Hessian matrix82). Now, relation(97) says that one easily proves the following analog of E@9):
1
(K =5 (K (K] (10D) 42 f‘HW(X)ZIIVSE(X)IIZdX
(E)j*~Ebest™ 5 (104
and so, f Yip(x)%dx
R
1
(E>g:§[<E>Z'1+<E)Z'2]. (102 Since the expression on the right-hand side does not explic-

itly involve derivatives of the optimizing coefficients, we

The reader might have already realized that the formuld'@ve the equality
(102 is the key to the semisum theorem announced at the

beginning of the section. It also implies that there is no need f o 2
for the partial derivatives of the optimizing parameters, in . Ho K2 ‘Hpbes(x)HVSg(x)H dx
order to compute thel-method estimator. For the case of the lim (E) 3= Epest o’m ,
HO-LVP, theH-estimator function has the expression B j Poest X)dX
R
(109

1 202
ng(x;ﬁ)— +V(x)+,83C4h6(,BC)+ fdtv"

2B where we seb=B(x,) before integration. With the hy-
— o 832Bhy( BC,1)Th+(BC,1), (103 pothHezs_ls that t.he potent_lal is positive in mind, we see _that
(E)p“ is the biggest estimator around, so all above defined
whereo is defined by Eq(90). estimators are bounded IEy,estfor low enough temperature.

To continue, we turn our attention to some convergencé/oreover, the esUmato(rK) cannot be negative since
problems. The expected values of the potential energy or
other diagonal operator8ncluding the constant functiohs

converge smoothly to the expected values computed with dx

respect tgy,..{X) asB—x, fact that can be justified in most B0

cases with the help of the dominated convergence theorem lim (K) =om ’ =0. (106
(see Theorem 2.24 of R4f34]). However, this theorem can- B—e m

f PBes&X)dX
R

not be used directly in the case of the expected values of the
operators whose estimators explicitly involve the partial de-
rivatives of B(x,x’;8). As we saw in the preceding section, It follows that the first term from the relatioi100 is

their moduli may blow up o@D, so no dominating function bounded byE,.s;wheng is large and again with the help of
might exist. Theorem 3, one may establish the result

m 7 dB(x,x"; B) dB(x,x"; B)
52 Ebestf pbesﬁx)dx>;lg’1w eBEbeS[J dX_P%X B) X ax }er:Ml
. PE(dy)  Pyy(x)?] dB(x,x';8) dB(x.X'; )
= lim jdx e =M,
B—> R ﬁb ﬁb IX X x=x'
PE(PD  Pyn(x)2| dB(X,X': B) IB(X,X':
axiim | g EL0) _ PURY| TBGX ) 3B Bl 107
R goo Jb aJb X IxX ‘x:x’
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where we used Fatou’s lemma for the last inequality. In this

respect, notice that the evaluation of the Hessian matrices
done atb=B(x,8) and that

PE(Sy)  PYp(x)
b2 Jb?

(108

is positive definite at each poirt In order for the inequality
to hold for arbitrarily large3, when the energy Hessian ma-
trix also becomes positive definite, the following condition is
necessary:

0ZE(¢%) IB(X,X";0) IB(X,X ;%)

o X X =0 a.e.

- (109
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2

lim eBEbest

B—x

is Poes{ X X"; B)

fdx

R

=fdx
R

With these results at hand, it is not hard to conclude that

IXIX’

x=x'

Poes{ X X") +M;—M,.

IXax’

x=x'

(113

h? M
lim (E)f= I|m<E>H 1t !

2m [ . N
Ppes{X)dX
R
ﬁz Ml_M2

tom———.
2m .
J']Ppbesﬁx)dx

El(P[t))est)

B—*

(114

or otherwise, the argument of the last integral in the expresih an analog manner but using E§6), one proves

sion (107) becomes arbitrarily large on a set of strictly posi-

tive measure, which contradicts the fact that the integral is
bounded on the entire low-temperature range. The equality
(109 can be realized either by the almost everywhere van-

ishing of the derivatives of the optimizing coefficients as in

the case studied in Sec. lll, or by the vanishing of some
normal modes of the energy Hessian matrix. Consequently,

2 IB(x,X"; B) dB(X,x'; )

Jd
i BEpest ay:
Jim_ @ R o6 B) Ta
PP Pi(x)? IB(X, X ;%) IB(X,X' ;)| 0
= =
b2 ax ax |
(110

and the last function integrates kb,<M;. Now, we have

2
lim | ePEbest ~pp(X.X"; B)
B e
2
— 111)
= o [ 4(X) Yip(X)] (111
pointwise, but also
(92
lim f dx[eﬁEbest pa(X.X"; )
Boowd R IXIX' -
- | g e 12

A comparison with Eq(95) produces

h? M,

I|m <E>B_ lim (E) “om T
a | restocix
LB M-
=Ea(ppes) — om (119
ﬁppi)esﬁx)dx

Summation of Eqs(114) and (115 produces the following
theorem.

Theorem 5 (semisumYhe low-temperature limit of the
H-method energy estimator is

lim (E)j= Z[El(pbest)+E2 Poest |- (119

B—°

BecauseM ;=M,, the various estimators introduced in
this section can be put in the following order:

lim <E>Z’l$ El(pgest)g lim <E>Z$E2(p;)est)

B—x B—
< lim (E)j*< lim (E)j (117
ﬁ*»oc ﬁﬂoo

[for the last inequality use Eq$88) and (105)]. For conti-
nuity reasons, it is convenient ttefinethe energy of the LVP
ground state density matrix as

1
E(Pz)est)ZE[El(P:Jest)"' Ez(pz)est)]- (118

If the decomposition in set®; is true, the almost every-
where vanishing of the derivatives of the optimizing coeffi-
cients impliesM,=0 and we recover E(q79) as it should.
But in this very important case, maybe more significant is the
fact thatE;(ppes) and E(ppes) are above the true ground
state energy and therefore LVP is able to provide a varia-
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tional energy which is better thaB,.s;, the best energy expected that the centroid approximation behaves in a better
predicted by the variational centroid based techniques. way than the zero-order partial averaging formula as far as
the “direct” finite-temperature partition function and the re-
VI. THE EREE PARTICLE REFERENCE CASE lated T-method estimator are concerned. This should be true
AS THE BASIC PROTOTYPE even if the analysis performed in this paper showed that the
) ) ) ) ) high-temperature and the low-temperature limits are the
To summarize the results obtained in this paper in on&ame for the two methods. However, thises not meathat
sentence, the dependence of the density matrix with the cqne centroid formula gives the better description of the sys-
ordinatesx andx’ is reproduced by the LVP approximation tem. To the contrary, we assert that by means of the
in a significantly better way than the dependence with they.method estimator, the zero-order partial averaging formula
inverse temperaturg. This is why theH-method estimator provides the better description of the system as far as the
behaVeS in a better Way than th-anethod estimator. It iS average energi@.nd by integration against temperature' the
then interesting to compare the variational centroid methoglatio of the partition functions at different temperatyres
with the LVP method for the simple case when the referencgoncerned. We shall present numerical evidence supporting
system is the free particle one, so thd(x)=0. The pointis  our claims by analyzing a simple case of a periodic monodi-
that in this case we can leave any parameter optimizatiofhensional potential. We choose a periodic potential because

issues'aside. . . _ in this case the low-temperature limits of both the partial
~ Letting o= yA~A/m, the LVP density matrix approxima- averaging and the centroid formulas are well defined. Nev-
tion takes the form ertheless, the reader should be aware of the fact that the free

particle reference is the worst scenario for LVP as to its
1 . . S
_ 0 advantage over the equivalent centroid approximation. For
exp{ 'BJ’O EV[X(tHUBt]dt] the HO-LVP theory, the value dff,(t) is controlled by the
spread of the best fitting Gaussian and to a less extent by the
B 1— temperature. Eventually, for low enough temperature,
—exp{ _'BJ’O V‘~°[X(t)]dt]’ (119 J5T2(t)dt equals the spread of the best fitting Gaussian, but
this also happens for the centroid based approximations.
where Therefore, the latter’s advantage is diminished.
Let us consider a monodimensional periodic potential of
period . and let

P (XX'3B)
pfp(xvxr;ﬁ)

2

— 1
\% )zf ——expg — ——|V(y+2z)dz
R A=y p[ oz | VY
V(x)= 2, v,ek™/t (122
with T'2(t) defined by kEz K
I'3(t)=0?E(BY)?=0?t(1—1). be its Fourier series. By the reality of the potentigk), we

o o ~have v_y=vy. By Theorem 3, the low-temperature
This is the zero-order approximation of the so-called partiaasymptotic of the zero-order partial averaging density matrix

averaging metho{i24]. is
The variational centroid expression for the diagonal cen-

troid density matrix i7] pEAX, X" B)~exp{ —[S(x)+S(x") ]}exp — Buo)/ V2L,

_ — (122

po(x; B)=(2ma?) " Hoe KW, (120
where
where
1 (L
e e A ) o
V)= | === — -5 |V(y+t2dz
R N2mot/12 20712 is the cell average of the potential and where
The question we want to answer is which one of the for- 2
mulas (119 and (120) provides a better description of the S(x)= 2mL %eikﬂ-x/L' (123
physical system. To this end, notice that the spread in the 22 keZk+0 k?
partial averaging formula is on average twice as large as the
one for the centroid approximation, Then, the low-temperature limit of th&-method estimator
for both the centroid and the partial averaging approxima-
1 . .
f T2(t)dt=02/6=2(02/12). tions Is
0 .
lim (E);=vo, (124

B—x

This is so because the centroid position is defined as a path

average, being the unique valwearound which the fluctua- while the low-temperature limit of thei-method estimator
tion fé(B?—x)zdt of a path is minimized. It is therefore for the partial averaging formula is
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FIG. 4. The ground state energies given by the low-temperature £ 5. values of the partial averagingestimatorE,, partial
limits of the T-method estimator and thid-method estimator are averagingH estimatorEl . centroidT-estimatorES . and the exact
plotted together with the exact ground state energies for variougner s

) gyEf;X as functions of the inverse temperatygén a logarith-
values of the potential frequenay

mic scale. Atomic units were used for energy ghd

L diagonal density matrices. Moreover, the Trotter composition
_ 2 1
42 fﬁLexp: 28001V S(x)][*dx method systematically improves the finite-temperature LVP
lim <E)g Vo~ 5 3 . density matrix up to the correct value. Then, LVP always
B f exfd —2S(x)]dx gives a better ground state energy than the one predicted by
-L the Gibbs-Bogoliubov-Feynman principle provided that the

(125  H-method estimator is used. Finally, we conclude that the
LVP gives a description of the physical system which is more

For a periodic potential, a state is callbdundingif its .
. . . accurate and more complete than the one provided by the
expected energy is strictly smaller than the potential average

It follows that the centroid methofails to predict a bound- cgntrqd based approximations. | remind the reader t.hat this
) S , situation was caused by the fact that there is no practical way
ing ground state for the periodic potential. To the contrary, L . )

. . . of defining anH estimator for the latter methods. Since the
the zero-order partial averaging formulioes predict a

bounding ground state by means of testimator. The pre- GBF principle becomes essentially a local approximation in

dicted ground state energy is shown in Fig. 4 for the case ot1he ce_r:jtr(_)(;d space, It _mﬁly é)e pglssmle that by mod|W|Eg_the
the periodic potential centroid idea, one might be able to construct a technique

inheriting the best features of the two methods.

V(X)=0.5 1+ cog 2mvx)] Unfortunately, there are several drawbacks of the LVP

method(all of them being shared by the variational centroid

and is plotted as a function of the frequencyAgain we use techniques The first problem is the need for expensive
atomic units and consider a particle of mass 1. The exact pointwise local maximization procedures. However, they can
ground state energies were computed with the help of thée approximately performed as long as the estimators of the
Rayleigh-Ritz variational principle by expansion in a Fourier€valuated properties do not explicitly involve the derivatives
series. One notices that tHé-method energy is in good Of the optimizing parametergboth the T-method and the

agreement with the exact result in the range of high frequenH-method estimators are “stable” in this respedfo under-
cies, but extrapolates toy/2 instead of 0 in the low fre- stand the second undesirable feature, let us imagine that we

quency range. slightly unbalance the double-well potential. Then, the best
It is instructive to study the behavior of the finite- Gaussian distribution that realizes the minimum of &)
temperature energy estimators for the periodic pote('m'ym is Unique and will be localized in the well of lower energy.
setr=0.25). Because in practice one stops the calculationdhus, there is a discontinuity of the method with respect to
the first time the energy fails to decrease with the temperathe balancing of the main wells of the potential. The LVP
ture, Fig. 5 suggests that the centrdisnethod estimator has partially accounts for this problem with the help of a correc-
a better behavior than the corresponding L¥4nethod en- tion factor[see Eq(44)], but the improvement is not always
ergy, even if their low-temperature limits are the same. How-Satisfactory.
ever, the LVPH-method estimator has an overall even better ~ Finally, let us notice that given a poink,x’) in the con-
behavior, providing the closest answer to the exact energy fdiguration space, the HO-LVP technique gives explicit infor-
the investigated range of temperatures. The exact energi@gation about how the density matrix looks around this point
were computed by numerical matrix multiplicati¢see for ~ on a range established by the temperature and by the quan-

instance, Ref[35]). tum properties of the system. This information can be used to
create optimal filters in conjunction with standard semiclas-
VII. CONCLUDING REMARKS sical approximations for the thermalized quantum dynamical

correlation functions. In this respect, as discussed by Miller

The local variational principle is alleviating some of the [36], the semiclassical Van Vleck or Herman-Kluk propaga-
disadvantages of the GBF principle. Specifically, it makesors in the initial value representation could be effectively
better use of simple reference potentials to produce accuratgsed in quantum simulations for sufficiently large systems
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and for chemically relevant times if not for the associated

PHYSICAL REVIEW E6, 066133 (2002

o

1
“sign problem.” This is generated by the integration over the hs(c,t)= 2 ﬁ oK sin(2kwt) =
initial conditions and can be alleviated by the use of filtering k=1 (2k)“+
techniques, which are also advantageous because they re- -
quire only local information about the density matrix for an sin}-{—c(l—Zt)}
optimal implementation. Though a final decision as to the x{ (1-2t)— 2 (Ad)
feasibility of this idea awaits future detailed work, | antici- N '
pate that this localanalytica) information can be quantita- sinh 5 ¢
tively furnished by the HO-LVP technique under the form of
a “built in” filter.
< 1 m cosh{mec) 1
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APPENDIX: DEFINITION OF THE H FUNCTIONS 42 Wsmh(wc)Z ¢ sinh(7c)
ol e Vi e
cosh = ¢ 1 cosht ¢
o-ll e Ve Y _mm N2 r(z 2
A
w sin C sm =C
1 2 2
hy(c,t)= ——— sin(krt)?
et)=2 5 sinkt) 26)
cosl{mc)—cosh mc(1—2t
_ 7 cos{me)—costime(d-20] i
4c sinh(7rc) he(C) = E _
k=1 [(2k)2+c?)?
c, sin (2k+ 1) mt 2
ha(e.t)= E (2k+1)2+c2 2k 1 oM ] cosH —¢ cost —¢
I 2 7T+ 1 2 4
8C2 2 i w Z 2 w B 7TC2 '
I sin wc(1—1)] sinn 5 ¢ sinh 5 ¢
4c2 sinh(7rc) (A7)
il —c(1—2 inj—c(1—2
sin EC( —2t) Sin 7c(1—1)] sin EC( —2t)
+ , (A3) ho(c,t)= . (A8)

sinh(7c)
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